当前位置: X-MOL 学术Energy Econ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Forecasting interval carbon price through a multi-scale interval-valued decomposition ensemble approach
Energy Economics ( IF 13.6 ) Pub Date : 2024-10-04 , DOI: 10.1016/j.eneco.2024.107952
Kun Yang, Yuying Sun, Yongmiao Hong, Shouyang Wang

This paper proposes a novel Multi-scale Interval-valued Decomposition Ensemble (MIDE) framework for forecasting European Union Allowance (EUA) carbon futures prices, which integrates Noise-assisted Multivariate Empirical Mode Decomposition (NAMEMD), Interval-valued Vector Auto-Regressive (IVAR) model, Interval Event Analysis (IEA) method, and Interval Multi-Layer Perceptron (IMLP). First, the original interval-valued carbon prices with other interval-valued control variables are decomposed and integrated into high, medium, and low-frequency components by NAMEMD. Second, IVAR is used to investigate the dynamics of the interval-valued vector system in low-frequency components, while IMLP is employed to characterize the high-frequency components. Besides, the interval event analysis investigates typical events that significantly impact carbon prices in the medium-frequency component. Furthermore, empirical findings indicate that our proposed MIDE learning approach significantly outperforms some other benchmark models in out-of-sample forecasting.

中文翻译:


通过多尺度区间值分解集成方法预测区间碳价格



本文提出了一种新的多尺度区间值分解集成 (MIDE) 框架,用于预测欧盟配额 (EUA) 碳期货价格,该框架集成了噪声辅助多元经验模态分解 (NAMEMD)、区间值向量自回归 (IVAR) 模型、区间事件分析 (IEA) 方法和区间多层感知器 (IMLP)。首先,由 NAMEMD 将原始区间值碳价格与其他区间值控制变量分解并整合为高、中、低频分量;其次,IVAR 用于研究区间值矢量系统在低频分量中的动力学,同时采用 IMLP 来表征高频分量。此外,区间事件分析调查了对中频分量碳价格产生显著影响的典型事件。此外,实证结果表明,我们提出的 MIDE 学习方法在样本外预测方面明显优于其他一些基准模型。
更新日期:2024-10-04
down
wechat
bug