当前位置:
X-MOL 学术
›
Mech. Syst. Signal Process.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A tracking speed enhancement method of a laser-tracing measurement system based on compound fuzzy control and friction torque compensation
Mechanical Systems and Signal Processing ( IF 7.9 ) Pub Date : 2024-11-01 , DOI: 10.1016/j.ymssp.2024.112059 Hongfang Chen, Bailin Liu, Ziqi Liang, Zhaoyao Shi
Mechanical Systems and Signal Processing ( IF 7.9 ) Pub Date : 2024-11-01 , DOI: 10.1016/j.ymssp.2024.112059 Hongfang Chen, Bailin Liu, Ziqi Liang, Zhaoyao Shi
In a laser-tracing measurement system, the tracking control performance largely determines the measurement accuracy. However, the continuous forward and reverse movements of the system required for the tracking process, frictional torque, and external disturbances affect the tracking performance. In addition, when a two-dimensional position-sensitive detector extracts the target information, the required quantity of light intensity accumulation and circuit processing time lead to a time delay in obtaining the position deviation. In this study, we propose a tracking control method based on compound fuzzy control (CFC) and friction torque compensation (FTC) to enhance the control performance. To compensate for the position lag and frictional torque in the system and to enhance the tracking and anti-interference performance, a compound fuzzy control method based on position feedforward control and dual-mode control was employed. In this study, a field-oriented control strategy was used to achieve tracking control in a laser-tracking control system. In this method, the speed loop adopted a variable-universe fuzzy proportional–integral (VUFPI) control strategy with friction torque compensation, whereas the position loop employed a compound fuzzy control strategy. The simulation and experimental results demonstrate that the improved CFC–(VUFPI+FTC) cascade control method offers better tracking performance than the traditional proportional–integral cascade control method. The rotational-axis tracking speed of the laser-tracking control system improved by 84.6%, while the pitch axis tracking speed increased by 93%.
中文翻译:
一种基于复合模糊控制和摩擦力矩补偿的激光跟踪测量系统跟踪速度增强方法
在激光跟踪测量系统中,跟踪控制性能在很大程度上决定了测量精度。然而,跟踪过程所需的系统连续前进和反向运动、摩擦扭矩和外部干扰都会影响跟踪性能。此外,当二维位置敏感探测器提取目标信息时,所需的光强积累量和电路处理时间会导致获得位置偏差的时间延迟。在本研究中,我们提出了一种基于复合模糊控制 (CFC) 和摩擦扭矩补偿 (FTC) 的跟踪控制方法,以增强控制性能。为补偿系统中的位置滞后和摩擦力矩,增强跟踪和抗干扰性能,采用了基于位置前馈控制和双模式控制的复合模糊控制方法。本研究采用磁场定向控制策略在激光跟踪控制系统中实现跟踪控制。该方法采用带摩擦扭矩补偿的变域模糊比例积分 (VUFPI) 控制策略,而位置环采用复合模糊控制策略。仿真和实验结果表明,改进的 CFC–(VUFPI+FTC) 级联控制方法比传统的比例-积分级联控制方法具有更好的跟踪性能。激光跟踪控制系统的旋转轴跟踪速度提高了 84.6%,而俯仰轴跟踪速度提高了 93%。
更新日期:2024-11-01
中文翻译:
一种基于复合模糊控制和摩擦力矩补偿的激光跟踪测量系统跟踪速度增强方法
在激光跟踪测量系统中,跟踪控制性能在很大程度上决定了测量精度。然而,跟踪过程所需的系统连续前进和反向运动、摩擦扭矩和外部干扰都会影响跟踪性能。此外,当二维位置敏感探测器提取目标信息时,所需的光强积累量和电路处理时间会导致获得位置偏差的时间延迟。在本研究中,我们提出了一种基于复合模糊控制 (CFC) 和摩擦扭矩补偿 (FTC) 的跟踪控制方法,以增强控制性能。为补偿系统中的位置滞后和摩擦力矩,增强跟踪和抗干扰性能,采用了基于位置前馈控制和双模式控制的复合模糊控制方法。本研究采用磁场定向控制策略在激光跟踪控制系统中实现跟踪控制。该方法采用带摩擦扭矩补偿的变域模糊比例积分 (VUFPI) 控制策略,而位置环采用复合模糊控制策略。仿真和实验结果表明,改进的 CFC–(VUFPI+FTC) 级联控制方法比传统的比例-积分级联控制方法具有更好的跟踪性能。激光跟踪控制系统的旋转轴跟踪速度提高了 84.6%,而俯仰轴跟踪速度提高了 93%。