当前位置:
X-MOL 学术
›
Earth Sci. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Biostabilization: Parameterizing the interactions between microorganisms and siliciclastic marine sediments
Earth-Science Reviews ( IF 10.8 ) Pub Date : 2024-11-07 , DOI: 10.1016/j.earscirev.2024.104976 Brette S. Harris, Kelly J. Rozanitis, Bruce Sutherland, Paul G. Myers, Kurt O. Konhauser, Murray K. Gingras
Earth-Science Reviews ( IF 10.8 ) Pub Date : 2024-11-07 , DOI: 10.1016/j.earscirev.2024.104976 Brette S. Harris, Kelly J. Rozanitis, Bruce Sutherland, Paul G. Myers, Kurt O. Konhauser, Murray K. Gingras
Microbial mats have existed for much of Earth's history. They represent some of the earliest evidence of life, are essential in biogeochemical cycles, and played a pivotal role in oxygenating the atmosphere. In addition, benthic microbiota impact sediment properties by enhancing the cohesion and stability of the substratum, a process known as ‘biostabilization’, which affects sediment dynamics and rheology. A substantial body of research has focused on experimentally quantifying biostabilization in siliciclastic sediments. This review compiles and synthesizes these studies in order to facilitate comparison of results. They, in turn, are compared with; (1) the Shields' diagram, (2) shear stress values in shallow marine environments, and (3) occurrences of microbially induced sedimentary structures in the marine stratigraphic record. The findings reveal significant variability in outcomes, with increases in the Shields' Parameter ranging from 0.1 to 4 orders of magnitude. They also demonstrate that high-energy hydrodynamic conditions, such as those above fairweather wave base, inhibit microbial colonization. Additionally, the review briefly discusses two applications of the data: (1) refining models of the Great Oxidation Event, and (2) evaluating microbial biostabilization as a response to increased coastal erosion driven by climate change.
中文翻译:
生物稳定性:参数化微生物和硅碎屑海洋沉积物之间的相互作用
微生物垫在地球历史的大部分时间里都存在。它们代表了生命的一些最早证据,在生物地球化学循环中至关重要,并在为大气充氧方面发挥了关键作用。此外,底栖微生物群通过增强基质的内聚力和稳定性来影响沉积物特性,这一过程称为“生物稳定”,会影响沉积物动力学和流变学。大量研究集中在实验量化硅碎屑沉积物中的生物稳定性。本综述汇编和综合了这些研究,以便于结果的比较。反过来,他们又被比较;(1) Shields 图,(2) 浅海环境中的剪切应力值,以及 (3) 海洋地层记录中微生物诱导沉积结构的出现。研究结果揭示了结果的显着可变性,Shields 参数的增加范围为 0.1 到 4 个数量级。他们还证明,高能流体动力学条件,例如晴朗天气波底以上的条件,会抑制微生物定植。此外,该综述还简要讨论了数据的两种应用:(1) 完善大氧化事件的模型,以及 (2) 评估微生物生物稳定性作为对气候变化导致的海岸侵蚀加剧的响应。
更新日期:2024-11-07
中文翻译:
生物稳定性:参数化微生物和硅碎屑海洋沉积物之间的相互作用
微生物垫在地球历史的大部分时间里都存在。它们代表了生命的一些最早证据,在生物地球化学循环中至关重要,并在为大气充氧方面发挥了关键作用。此外,底栖微生物群通过增强基质的内聚力和稳定性来影响沉积物特性,这一过程称为“生物稳定”,会影响沉积物动力学和流变学。大量研究集中在实验量化硅碎屑沉积物中的生物稳定性。本综述汇编和综合了这些研究,以便于结果的比较。反过来,他们又被比较;(1) Shields 图,(2) 浅海环境中的剪切应力值,以及 (3) 海洋地层记录中微生物诱导沉积结构的出现。研究结果揭示了结果的显着可变性,Shields 参数的增加范围为 0.1 到 4 个数量级。他们还证明,高能流体动力学条件,例如晴朗天气波底以上的条件,会抑制微生物定植。此外,该综述还简要讨论了数据的两种应用:(1) 完善大氧化事件的模型,以及 (2) 评估微生物生物稳定性作为对气候变化导致的海岸侵蚀加剧的响应。