当前位置: X-MOL 学术J. Comb. Theory A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reconstruction of hypermatrices from subhypermatrices
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2024-10-22 , DOI: 10.1016/j.jcta.2024.105966
Wenjie Zhong, Xiande Zhang

For a given n, what is the smallest number k such that every sequence of length n is determined by the multiset of all its k-subsequences? This is called the k-deck problem for sequence reconstruction, and has been generalized to the two-dimensional case – reconstruction of n×n-matrices from submatrices. Previous works show that the smallest k is at most O(n12) for sequences and at most O(n23) for matrices. We study this k-deck problem for general dimension d and prove that, the smallest k is at most O(ndd+1) for reconstructing any d dimensional hypermatrix of order n from the multiset of all its subhypermatrices of order k.

中文翻译:


从子超矩阵重建超矩阵



对于给定的 n,最小的数字 k 是多少,使得每个长度为 n 的序列都由其所有 k 子序列的多集确定?这称为序列重建的 k 甲板问题,并已推广到二维情况 – 从子矩阵重建 n×n 矩阵。以前的工作表明,对于序列,最小的 k 最大为 O(n12),对于矩阵最大为 O(n23)。我们针对一般维度 d 研究这个 k-deck 问题,并证明,最小的 k 最多为 O(ndd+1),用于从其所有 k 阶超矩阵的多重集重建任何 n 阶的 d 维超矩阵。
更新日期:2024-10-22
down
wechat
bug