当前位置: X-MOL 学术J. Comb. Theory A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Some expansion formulas for q-series and their applications
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2024-08-12 , DOI: 10.1016/j.jcta.2024.105941
Bing He, Suzhen Wen

In this paper, we establish some general expansion formulas for q-series. Three of Liu's identities motivate us to search and find such type of formulas. These expansion formulas include as special cases or limiting cases many q-identities including the q-Gauss summation formula, the q-Pfaff-Saalschütz summation formula, three of Jackson's transformation formulas and Sears' terminating ϕ34 transformation formula. As applications, we provide a new proof of the orthogonality relation for continuous dual q-Hahn polynomials, establish some generating functions for special values of the Dirichlet L-functions and the Hurwitz zeta functions, give extensions of three of Liu's identities, establish an extension of Dilcher's identity, and deduce various double Rogers-Ramanujan type identities.

中文翻译:


q 系列的一些展开公式及其应用



在本文中,我们建立了 q 级数的一些通用扩展公式。Liu 的三个身份激励我们搜索并找到这种类型的公式。这些展开公式包括许多 q 恒等式作为特殊情况或极限情况,包括 q-Gauss 求和公式、q-Pfaff-Saalschütz 求和公式、Jackson 变换公式中的三个公式和 Sears 终止 φ34 变换公式。作为应用,我们提供了连续对偶 q-Hahn 多项式的正交关系的新证明,为狄利克雷 L 函数和 Hurwitz zeta 函数的特殊值建立了一些生成函数,给出了刘氏三个恒等式的扩展,建立了 Dilcher 恒等式的扩展,并推导出各种双 Rogers-Ramanujan 型恒等式。
更新日期:2024-08-12
down
wechat
bug