当前位置:
X-MOL 学术
›
Radiat. Phys. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Damage mechanisms caused by radiation in Proton(ion beam) double interface layer nano-MOS structure
Radiation Physics and Chemistry ( IF 2.8 ) Pub Date : 2024-11-09 , DOI: 10.1016/j.radphyschem.2024.112366 Defne Akay, Özlem Abay, Hüseyin Sönmez, Uğur Gökmen, Sema Bilge Ocak
Radiation Physics and Chemistry ( IF 2.8 ) Pub Date : 2024-11-09 , DOI: 10.1016/j.radphyschem.2024.112366 Defne Akay, Özlem Abay, Hüseyin Sönmez, Uğur Gökmen, Sema Bilge Ocak
In this study, the effects of ion beam (proton) on the PbO/SnO2 /p-Si double interfacial layer MOS Schottky diode material were studied. The parameters of the ionizing radiation detection properties and radiation resistance of using double interfacial oxide layers were analyzed in MOS Schottky diodes. In the analysis, SRIM/TRIM software code was examined theoretically and modeled using simulation. The displacement per atom occurs more in the SnO2 oxide layer than in the other interface layer. This can be explained by the concept of Bragg Curve Peak, which occurs as a result of ion beam induced doping effect. It has been observed that the electrical properties of the PbO/SnO2 /p-Si double interface layer MOS Schottky diode structure in terms of sensing ionizing radiation change after ion beam induced doping and the interface states are affected. It has been shown that our double interface layer nano-MOS structure can be used as a ion beam based sensor on these results. In addition to the inelastic collision, without causing ionization NIEL values of PbO and SnO2 layers were found to be 424.88 MeV. cm2 /g and 524.9 MeV. cm2 /g, respectively. These theoretical results were shown as graphs using the TRIM Monte Carlo simulation program and the behavior of the phonons in the layers was modeled. Additionally, LET values were calculated according to layers and compared with the simulation results of TRIM. While the LET value of the PbO layer was 889.3 MeV. cm2 /g, the LET value of the SnO2 layer was determined to be 1639 MeV cm2 /g. The LET concept is visually presented with the TRIM software and it is seen that the displacement per atom is highest in the SnO2 layer and the Bragg Curve reaches its maximum point. Thus, it can be seen that the SnO2 layer produces more transient damage and oxide interface traps compared to the PbO layer as ionizing radiation propagates between the oxide layers. By studying the effects of the ion beam source on the MOS Schottky diode structure, it is shown that the double interface layer structure increases the oxide interface traps and the SnO2 material is promising in terms of radiation sensing and detection properties. Moreover, MOS Schottky states that using a double interface layer instead of a single oxide layer in MOS structures positively increases the number of interface traps in the oxide layer for ion beam radiation detection.
中文翻译:
质子(离子束)双界面层纳米MOS结构中辐射引起的损伤机制
本研究研究了离子束(质子)对 PbO/SnO2/p-Si 双界面层 MOS 肖特基二极管材料的影响。分析了 MOS 肖特基二极管中使用双界面氧化层的电离辐射检测性能和辐射电阻参数。在分析中,对 SRIM/TRIM 软件代码进行了理论检查,并使用仿真进行了建模。每个原子的位移在 SnO2 氧化物层中比在其他界面层中发生得更多。这可以用布拉格曲线峰的概念来解释,布拉格曲线峰是离子束诱导掺杂效应的结果。据观察,PbO/SnO2/p-Si 双界面层 MOS 肖特基二极管结构在感应离子束诱导掺杂后电离辐射变化和界面状态方面的电性能受到影响。根据这些结果表明,我们的双界面层 nano-MOS 结构可以用作基于离子束的传感器。除了非弹性碰撞外,在不引起电离的情况下,发现 PbO 和 SnO2 层的 NIEL 值为 424.88 MeV。cm2/g 和 524.9 MeV。cm2/g 的 c.这些理论结果使用 TRIM Monte Carlo 仿真程序以图表形式显示,并对各层中声子的行为进行了建模。此外,根据层计算 LET 值,并与 TRIM 的仿真结果进行比较。而 PbO 层的 LET 值为 889.3 MeV。cm2/g,SnO2 层的 LET 值确定为 1639 MeV cm2/g。LET 概念通过 TRIM 软件直观地呈现,可以看出 SnO2 层中每个原子的位移最高,布拉格曲线达到其最大值。 因此,可以看出,当电离辐射在氧化层之间传播时,与 PbO 层相比,SnO2 层会产生更多的瞬态损伤和氧化物界面陷阱。通过研究离子束源对 MOS 肖特基二极管结构的影响,表明双界面层结构增加了氧化物界面陷阱,并且 SnO2 材料在辐射传感和探测性能方面很有前景。此外,MOS 肖特基指出,在 MOS 结构中使用双界面层而不是单氧化层会积极增加离子束辐射检测的氧化层中的界面陷阱数量。
更新日期:2024-11-09
中文翻译:
质子(离子束)双界面层纳米MOS结构中辐射引起的损伤机制
本研究研究了离子束(质子)对 PbO/SnO2/p-Si 双界面层 MOS 肖特基二极管材料的影响。分析了 MOS 肖特基二极管中使用双界面氧化层的电离辐射检测性能和辐射电阻参数。在分析中,对 SRIM/TRIM 软件代码进行了理论检查,并使用仿真进行了建模。每个原子的位移在 SnO2 氧化物层中比在其他界面层中发生得更多。这可以用布拉格曲线峰的概念来解释,布拉格曲线峰是离子束诱导掺杂效应的结果。据观察,PbO/SnO2/p-Si 双界面层 MOS 肖特基二极管结构在感应离子束诱导掺杂后电离辐射变化和界面状态方面的电性能受到影响。根据这些结果表明,我们的双界面层 nano-MOS 结构可以用作基于离子束的传感器。除了非弹性碰撞外,在不引起电离的情况下,发现 PbO 和 SnO2 层的 NIEL 值为 424.88 MeV。cm2/g 和 524.9 MeV。cm2/g 的 c.这些理论结果使用 TRIM Monte Carlo 仿真程序以图表形式显示,并对各层中声子的行为进行了建模。此外,根据层计算 LET 值,并与 TRIM 的仿真结果进行比较。而 PbO 层的 LET 值为 889.3 MeV。cm2/g,SnO2 层的 LET 值确定为 1639 MeV cm2/g。LET 概念通过 TRIM 软件直观地呈现,可以看出 SnO2 层中每个原子的位移最高,布拉格曲线达到其最大值。 因此,可以看出,当电离辐射在氧化层之间传播时,与 PbO 层相比,SnO2 层会产生更多的瞬态损伤和氧化物界面陷阱。通过研究离子束源对 MOS 肖特基二极管结构的影响,表明双界面层结构增加了氧化物界面陷阱,并且 SnO2 材料在辐射传感和探测性能方面很有前景。此外,MOS 肖特基指出,在 MOS 结构中使用双界面层而不是单氧化层会积极增加离子束辐射检测的氧化层中的界面陷阱数量。