当前位置:
X-MOL 学术
›
Appl. Math. Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Finite-region dissipative control for two-dimensional Roesser systems via Markov jumping mechanism
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-11-05 , DOI: 10.1016/j.amc.2024.129106 Jiabao Wei, Hai Wang, Kaibo Shi, Shuping He, Chengcheng Ren
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-11-05 , DOI: 10.1016/j.amc.2024.129106 Jiabao Wei, Hai Wang, Kaibo Shi, Shuping He, Chengcheng Ren
This paper focuses on the dissipative control design problem for a class of Markov jump systems (MJSs) via two-dimensional (2D) Roesser models. In terms of Lyapunov functional methods and linear matrix inequalities techniques, sufficient conditions are established to obtain the dissipative controller, such that the closed-loop system is finite-region bounded with (Q , S , R )-κ -dissipative performance. Finally, the potential application of the designed approach is demonstrated via a numerical example of Darboux equations.
中文翻译:
通过马尔可夫跳跃机制对二维 Roesser 系统的有限区域耗散控制
本文重点介绍通过二维 (2D) Roesser 模型对一类马尔可夫跳跃系统 (MJS) 的耗散控制设计问题。根据 Lyapunov 泛函方法和线性矩阵不等式技术,建立了获得耗散控制器的充分条件,使得闭环系统是以 (Q, S, R)-κ-耗散性能为界的有限区域。最后,通过 Darboux 方程的数值示例证明了所设计方法的潜在应用。
更新日期:2024-11-05
中文翻译:
通过马尔可夫跳跃机制对二维 Roesser 系统的有限区域耗散控制
本文重点介绍通过二维 (2D) Roesser 模型对一类马尔可夫跳跃系统 (MJS) 的耗散控制设计问题。根据 Lyapunov 泛函方法和线性矩阵不等式技术,建立了获得耗散控制器的充分条件,使得闭环系统是以 (Q, S, R)-κ-耗散性能为界的有限区域。最后,通过 Darboux 方程的数值示例证明了所设计方法的潜在应用。