当前位置: X-MOL 学术npj Digit. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accurately predicting mood episodes in mood disorder patients using wearable sleep and circadian rhythm features
npj Digital Medicine ( IF 12.4 ) Pub Date : 2024-11-18 , DOI: 10.1038/s41746-024-01333-z
Dongju Lim, Jaegwon Jeong, Yun Min Song, Chul-Hyun Cho, Ji Won Yeom, Taek Lee, Jung-Been Lee, Heon-Jeong Lee, Jae Kyoung Kim

Wearable devices enable passive collection of sleep, heart rate, and step-count data, offering potential for mood episode prediction in mood disorder patients. However, current models often require various data types, limiting real-world application. Here, we develop models that predict future episodes using only sleep-wake data, easily gathered through smartphones and wearables when trained on an individual’s sleep-wake history and past mood episodes. Using mathematical modeling to longitudinal data from 168 patients (587 days average clinical follow-up, 267 days wearable data), we derived 36 sleep and circadian rhythm features. These features enabled accurate next-day predictions for depressive, manic, and hypomanic episodes (AUCs: 0.80, 0.98, 0.95). Notably, daily circadian phase shifts were the most significant predictors: delays linked to depressive episodes, advances to manic episodes. This prospective observational cohort study (ClinicalTrials.gov: NCT03088657, 2017-3-23) shows sleep-wake data, combined with prior mood episode history, can effectively predict mood episodes, enhancing mood disorder management.



中文翻译:


使用可穿戴睡眠和昼夜节律功能准确预测心境障碍患者的情绪发作



可穿戴设备可以被动收集睡眠、心率和步数数据,为情绪障碍患者的情绪发作预测提供了潜力。然而,当前的模型通常需要各种数据类型,这限制了实际应用。在这里,我们开发了仅使用睡眠-觉醒数据预测未来发作的模型,这些数据在对个人的睡眠-觉醒历史和过去的情绪发作进行训练时,可以通过智能手机和可穿戴设备轻松收集。使用数学模型对 168 名患者的纵向数据 (587 天平均临床随访,267 天可穿戴数据) 进行数学建模,我们得出了 36 个睡眠和昼夜节律特征。这些功能能够准确预测抑郁、躁狂和轻躁狂发作的第二天发作 (AUC: 0.80 、 0.98 、 0.95 )。值得注意的是,每日昼夜节律相移是最重要的预测因子:与抑郁发作相关的延迟,进展到躁狂发作。这项前瞻性观察队列研究 (ClinicalTrials.gov: NCT03088657, 2017-3-23) 显示睡眠-觉醒数据,结合既往心境发作史,可以有效预测心境发作,加强心境障碍管理。

更新日期:2024-11-18
down
wechat
bug