当前位置:
X-MOL 学术
›
Phys. Chem. Chem. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Proton exchange membranes based on Polycarbonate Track Etched (PCTE) membrane for direct methanol fuel cells
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-11-18 , DOI: 10.1039/d4cp03403a Zhixuan Ying, Yindong Wang, Wenjie Xi, Kejie Feng, Le Shi
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-11-18 , DOI: 10.1039/d4cp03403a Zhixuan Ying, Yindong Wang, Wenjie Xi, Kejie Feng, Le Shi
Direct methanol fuel cells (DMFCs) offer a promising power source by utilizing liquid-state methanol as fuel, providing easy storage and transportability. Currently, DMFCs commonly employ perfluorosulfonic acid membranes, such as the well-known Nafion membrane, as proton exchange membranes. However, perfluorosulfonic acid membranes have significant drawbacks in DMFCs, including a high crossover rate, substantial swelling, poor thermal stability, and elevated costs. The crossover of methanol fuel to the cathode side is particularly detrimental as it can poison the precious Pt catalyst, leading to damage in the fuel cell system. In this manuscript, we propose a non-ionic proton exchange membrane based on the Polycarbonate Track Etched (PCTE) membrane. The aligned nanopores in pristine PCTE, with a regular diameter, facilitate proton passage while mitigating the crossover of methanol molecules. This results in satisfactory proton conductivity and selectivity comparable to that of the commercial Gore membrane. By adding a layer of graphene treated with oxygen plasma for 10 seconds, methanol permeation can be reduced by 16.44%, while achieving a 42.11% increase in proton conductivity compared to the commercial Gore membrane. Furthermore, PCTE material offers a more cost-effective alternative to Gore membrane, with a 18.37 % lower swelling ratio and significantly higher stability. These characteristics make PCTE a promising choice for DMFCs, offering potential improvements in performance and cost-effectiveness.
中文翻译:
基于聚碳酸酯轨道刻蚀 (PCTE) 膜的质子交换膜,用于直接甲醇燃料电池
直接甲醇燃料电池 (DMFC) 利用液态甲醇作为燃料,提供了一种很有前途的能源,易于储存和运输。目前,DMFC 通常使用全氟磺酸膜,例如众所周知的 Nafion 膜,作为质子交换膜。然而,全氟磺酸膜在 DMFC 中具有明显的缺点,包括交叉率高、溶胀严重、热稳定性差和成本高。甲醇燃料向阴极侧的交叉尤其有害,因为它会毒害珍贵的 Pt 催化剂,导致燃料电池系统损坏。在这份手稿中,我们提出了一种基于聚碳酸酯轨道蚀刻 (PCTE) 膜的非离子质子交换膜。原始 PCTE 中排列的纳米孔具有规则直径,可促进质子通过,同时减轻甲醇分子的交叉。这导致了令人满意的质子电导率和选择性,可与市售的 Gore 膜相媲美。通过添加一层用氧等离子体处理 10 秒的石墨烯,甲醇渗透率可降低 16.44%,同时与市售戈尔膜相比,质子电导率提高 42.11%。此外,PCTE 材料是戈尔膜更具成本效益的替代品,溶胀率降低 18.37%,稳定性显著提高。这些特性使 PCTE 成为 DMFC 的有前途的选择,在性能和成本效益方面提供潜在的改进。
更新日期:2024-11-18
中文翻译:
基于聚碳酸酯轨道刻蚀 (PCTE) 膜的质子交换膜,用于直接甲醇燃料电池
直接甲醇燃料电池 (DMFC) 利用液态甲醇作为燃料,提供了一种很有前途的能源,易于储存和运输。目前,DMFC 通常使用全氟磺酸膜,例如众所周知的 Nafion 膜,作为质子交换膜。然而,全氟磺酸膜在 DMFC 中具有明显的缺点,包括交叉率高、溶胀严重、热稳定性差和成本高。甲醇燃料向阴极侧的交叉尤其有害,因为它会毒害珍贵的 Pt 催化剂,导致燃料电池系统损坏。在这份手稿中,我们提出了一种基于聚碳酸酯轨道蚀刻 (PCTE) 膜的非离子质子交换膜。原始 PCTE 中排列的纳米孔具有规则直径,可促进质子通过,同时减轻甲醇分子的交叉。这导致了令人满意的质子电导率和选择性,可与市售的 Gore 膜相媲美。通过添加一层用氧等离子体处理 10 秒的石墨烯,甲醇渗透率可降低 16.44%,同时与市售戈尔膜相比,质子电导率提高 42.11%。此外,PCTE 材料是戈尔膜更具成本效益的替代品,溶胀率降低 18.37%,稳定性显著提高。这些特性使 PCTE 成为 DMFC 的有前途的选择,在性能和成本效益方面提供潜在的改进。