当前位置: X-MOL 学术Sep. Purif. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flow channel simulation and optimization design of pervaporation membrane pool based on heat-mass-flow coupling
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-11-17 , DOI: 10.1016/j.seppur.2024.130455
Luchen Wang, Bo Sun, Qichao Sun, Weitao Zhang, Lianying Wu

Pervaporation (PV), recognized as a separation technology with vast potential, is highly dependent on the fluid flow patterns within the membrane module, which play a critical role in local mass transfer processes on the membrane surface. In this study, computational fluid dynamics (CFD) was employed to simulate two different flow channel designs for a PV membrane module, with experimental verification of the model’s accuracy. The results indicated that the parallel inlet–outlet and wavy flow channel design (Mode II) significantly improved the feed-side concentration and temperature distribution, leading to a 3.7 % increase in feed-side flow velocity. Further investigation into the effects of three membrane pool structural parameters on separation performance revealed that pressure drop was most significantly influenced by the inlet radius, while the wavy length-to-height ratio (L:H) has the greatest impact on separation performance. After optimization, the optimal membrane module structure was determined to be the baffle depth of 4 mm, the inlet radius of 1 mm, and the L:H of 1:1. Based on this optimized structure, the effects of operating conditions on separation performance were further explored. The study showed that increasing feed flow rate significantly enhanced separation performance, while increasing feed temperature and concentration intensified temperature and concentration polarization on the membrane surface. Through multi-objective optimization, the optimal operating conditions were determined to be the feed flow rate of 20 L·h-1, feed temperature of 55 °C, and feed concentration of 3 wt%. This study provides valuable theoretical insights and technical references for the design of PV membrane pool flow channels and the selection of operational conditions.

中文翻译:


基于热-质-流耦合的渗透蒸发膜池流道模拟与优化设计



渗透蒸发 (PV) 被认为是一种具有巨大潜力的分离技术,它高度依赖于膜组件内的流体流动模式,而流体流动模式在膜表面的局部传质过程中起着关键作用。在本研究中,采用计算流体动力学 (CFD) 来模拟 PV 膜组件的两种不同的流道设计,并对模型的准确性进行了实验验证。结果表明,平行入口-出口和波浪形流道设计(模式 II)显著改善了给水侧浓度和温度分布,导致给水侧流速提高了 3.7%。对 3 个膜池结构参数对分离性能影响的进一步研究表明,压降受入口半径的影响最显著,而波浪形长高比 (L:H) 对分离性能的影响最大。优化后,确定最佳膜组件结构为挡板深度 4 mm,入口半径 1 mm,长宽 1:1。基于这种优化结构,进一步探讨了操作条件对分离性能的影响。研究表明,增加进料流速可显著提高分离性能,而提高进料温度和浓度会增强膜表面的温度和浓度极化。通过多目标优化,确定最佳操作条件为进料流量 20 L·h-1,进料温度 55 °C,进料浓度 3 wt%。本研究为 PV 膜池流道的设计和运行条件的选择提供了宝贵的理论见解和技术参考。
更新日期:2024-11-17
down
wechat
bug