Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular Imprinting Strategy Enables Circularly Polarized Luminescence Enhancement of Recyclable Chiral Polymer Films
Small ( IF 13.0 ) Pub Date : 2024-11-18 , DOI: 10.1002/smll.202409078 Nianwei Wang, Ran Hong, Gong Zhang, Menghan Pan, Yinglong Bao, Wei Zhang
Small ( IF 13.0 ) Pub Date : 2024-11-18 , DOI: 10.1002/smll.202409078 Nianwei Wang, Ran Hong, Gong Zhang, Menghan Pan, Yinglong Bao, Wei Zhang
Circularly polarized luminescence (CPL) plays a crucial role in the fields of optical display and information technology. The pursuit of high dissymmetry factors (g lum ) and fluorescence quantum yields in CPL materials remains challenging due to inherent trade‐offs. In this work, molecular imprinting technology is employed to develop novel CPL‐active polymer films based entirely on achiral fluorene‐based polymers, achieving an enhanced g lum value exceeding 4.2 × 10−2 alongside high quantum yields. These chiral molecularly imprinted polymer films (MIPF) are synthesized via a systematic three‐step process: co‐assembly with limonene and a porphyrin derivative (TBPP), interchain crosslinking, and subsequent removal of small molecules. During this process, limonene acts as the chiral inducer, while TBPP serves dual roles as both the chiral enhancer and imprinted molecule. The elimination of TBPP creates chiral sites for various fluorescent molecules, facilitating full‐color CPL emission. The chiral MIPF exhibits stable CPL performance even after multiple cycles of post‐assembly and removal. Furthermore, these films can function as interfacial microreactors, enabling in situ chemical reactions that dynamically regulate CPL signals. Additionally, chiral self‐organization within achiral azobenzene polymer films can also be achieved using MIPF, serving as intense chiral light sources.
中文翻译:
分子印迹策略可实现可回收手性聚合物薄膜的圆偏振发光增强
圆偏振发光 (CPL) 在光学显示和信息技术领域起着至关重要的作用。由于固有的权衡,在 CPL 材料中追求高不对称因子 (glum) 和荧光量子产率仍然具有挑战性。在这项工作中,采用分子印迹技术开发完全基于非手性芴基聚合物的新型 CPL 活性聚合物薄膜,实现了超过 4.2 × 10-2 的增强钝化值以及高量子产率。这些手性分子印迹聚合物薄膜 (MIPF) 是通过系统的三步过程合成的:与柠檬烯和卟啉衍生物 (TBPP) 共组装、链间交联以及随后去除小分子。在此过程中,柠檬烯充当手性诱导剂,而 TBPP 充当手性增强剂和印迹分子的双重作用。TBPP 的消除为各种荧光分子创造了手性位点,促进了全色 CPL 发射。手性 MIPF 即使在多次后组装和去除循环后仍表现出稳定的 CPL 性能。此外,这些薄膜可以用作界面微反应器,实现动态调节 CPL 信号的原位化学反应。此外,手性偶氮苯聚合物薄膜内的手性自组织也可以使用 MIPF 实现,用作强手性光源。
更新日期:2024-11-18
中文翻译:
分子印迹策略可实现可回收手性聚合物薄膜的圆偏振发光增强
圆偏振发光 (CPL) 在光学显示和信息技术领域起着至关重要的作用。由于固有的权衡,在 CPL 材料中追求高不对称因子 (glum) 和荧光量子产率仍然具有挑战性。在这项工作中,采用分子印迹技术开发完全基于非手性芴基聚合物的新型 CPL 活性聚合物薄膜,实现了超过 4.2 × 10-2 的增强钝化值以及高量子产率。这些手性分子印迹聚合物薄膜 (MIPF) 是通过系统的三步过程合成的:与柠檬烯和卟啉衍生物 (TBPP) 共组装、链间交联以及随后去除小分子。在此过程中,柠檬烯充当手性诱导剂,而 TBPP 充当手性增强剂和印迹分子的双重作用。TBPP 的消除为各种荧光分子创造了手性位点,促进了全色 CPL 发射。手性 MIPF 即使在多次后组装和去除循环后仍表现出稳定的 CPL 性能。此外,这些薄膜可以用作界面微反应器,实现动态调节 CPL 信号的原位化学反应。此外,手性偶氮苯聚合物薄膜内的手性自组织也可以使用 MIPF 实现,用作强手性光源。