当前位置: X-MOL 学术Rev. Geophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Carbon Mineralization in Fractured Mafic and Ultramafic Rocks: A Review
Reviews of Geophysics ( IF 25.2 ) Pub Date : 2024-11-17 , DOI: 10.1029/2023rg000815
H. Nisbet, G. Buscarnera, J. W. Carey, M. A. Chen, E. Detournay, H. Huang, J. D. Hyman, P. K. Kang, Q. Kang, J. F. Labuz, W. Li, J. Matter, C. W. Neil, G. Srinivasan, M. R. Sweeney, V. R. Voller, W. Yang, Y. Yang, H. S. Viswanathan

Mineral carbon storage in mafic and ultramafic rock masses has the potential to be an effective and permanent mechanism to reduce anthropogenic CO2. Several successful pilot-scale projects have been carried out in basaltic rock (e.g., CarbFix, Wallula), demonstrating the potential for rapid CO2 sequestration. However, these tests have been limited to the injection of small quantities of CO2. Thus, the longevity and feasibility of long-term, large-scale mineralization operations to store the levels of CO2 needed to address the present climate crisis is unknown. Moreover, CO2 mineralization in ultramafic rocks, which tend to be more reactive but less permeable, has not yet been quantified. In these systems, fractures are expected to play a crucial role in the flow and reaction of CO2 within the rock mass and will influence the CO2 storage potential of the system. Therefore, consideration of fractures is imperative to the prediction of CO2 mineralization at a specific storage site. In this review, we highlight key takeaways, successes, and shortcomings of CO2 mineralization pilot tests that have been completed and are currently underway. Laboratory experiments, directed toward understanding the complex geochemical and geomechanical reactions that occur during CO2 mineralization in fractures, are also discussed. Experimental studies and their applicability to field sites are limited in time and scale. Many modeling techniques can be applied to bridge these limitations. We highlight current modeling advances and their potential applications for predicting CO2 mineralization in mafic and ultramafic rocks.

中文翻译:


裂隙镁铁质和超镁铁质岩石中的碳矿化研究进展



镁铁质和超镁铁质岩体中的矿物碳储存有可能成为减少人为 CO2 的有效和永久机制。在玄武岩中已经进行了几个成功的中试规模项目(例如 CarbFix、Wallula),展示了快速封存 CO2 的潜力。然而,这些测试仅限于注射少量的 CO2。因此,长期、大规模的矿化作业以储存应对当前气候危机所需的 CO2 水平的持久性和可行性尚不清楚。此外,超基性岩中的 CO2 矿化作用往往更强,但渗透性更差,尚未被量化。在这些系统中,裂缝预计将在岩体中 CO2 的流动和反应中起关键作用,并将影响系统的 CO2 储存潜力。因此,考虑裂缝对于预测特定储存地点的 CO2 矿化至关重要。在这篇评论中,我们重点介绍了已经完成和正在进行的 CO2 矿化试点测试的主要收获、成功和不足。还讨论了旨在了解裂缝中 CO2 矿化过程中发生的复杂地球化学和地球力学反应的实验室实验。实验研究及其对野外地点的适用性在时间和规模上受到限制。可以应用许多建模技术来弥合这些限制。我们重点介绍了当前的建模进展及其在预测镁铁质和超镁铁质岩石中 CO2 矿化的潜在应用。
更新日期:2024-11-18
down
wechat
bug