当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering Two-Dimensional Magnetic Heterostructures: A Theoretical Perspective
Nano Letters ( IF 9.6 ) Pub Date : 2024-11-18 , DOI: 10.1021/acs.nanolett.4c04251
Jinbo Pan, Yan-Fang Zhang, Yu-Yang Zhang, Shixuan Du

Two-dimensional (2D) magnetic materials have attracted great attention due to their promise for applications in future high-speed, low-energy quantum computing and memory devices. By integrating 2D magnetic materials with other magnetic or nonmagnetic materials to form heterostructures, the synergistic effects of interlayer orbital hybridization, spin–orbit coupling, and symmetry breaking can surpass the performance of single-layer materials and lead to novel physical phenomena. This review provides a comprehensive theoretical analysis of engineering 2D magnetic heterostructures, emphasizing the fundamental physics of interlayer interactions and the resulting enhancements and novel properties. It reviews the mechanisms and progress in tuning the magnetic ordering, enhancing the Curie temperature (Tc) and modulating properties such as topological magnetic structures, spin polarization, electronic band topology, valley polarization, and magnetoelectric coupling through the construction of 2D magnetic heterostructures. Additionally, this review discusses the current challenges faced by 2D magnetic heterostructures, aiming to guide the future design of higher-performance magnetic heterostructures.

中文翻译:


设计二维磁性异质结构:理论视角



二维 (2D) 磁性材料因其在未来高速、低能量量子计算和存储器件中的应用前景而受到广泛关注。通过将二维磁性材料与其他磁性或非磁性材料集成以形成异质结构,层间轨道杂交、自旋-轨道耦合和对称性打破的协同效应可以超越单层材料的性能,并导致新的物理现象。本文对工程二维磁性异质结构进行了全面的理论分析,强调了层间相互作用的基本物理学以及由此产生的增强功能和新特性。它综述了通过构建二维磁性异质结构来调整磁排序、提高居里温度 (Tc) 和调制特性(如拓扑磁性结构、自旋极化、电子能带拓扑、谷极化和磁电耦合)的机制和进展。此外,本文还讨论了二维磁性异质结构当前面临的挑战,旨在指导未来更高性能磁性异质结构的设计。
更新日期:2024-11-18
down
wechat
bug