当前位置:
X-MOL 学术
›
Energy Storage Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Extreme Environment-Adaptable and Ultralong-Life Energy Storage Enabled by Synergistic Manipulation of Interfacial Environment and Hydrogen Bonding
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-11-18 , DOI: 10.1016/j.ensm.2024.103915 Wanbin Dang, Wei Guo, Wenting Chen, Jinxin Wang, Qiuyu Zhang
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-11-18 , DOI: 10.1016/j.ensm.2024.103915 Wanbin Dang, Wei Guo, Wenting Chen, Jinxin Wang, Qiuyu Zhang
The broad applications of energy storage systems have brought improving demands for stable electrodes with robust tolerance to extreme environmental challenges. MXenes show promising pseudocapacitive behaviors, however, the poor thermodynamical and mechanical stability makes them unfavorable for applications under complex and harsh environments. Herein, we break these limitations by aramid nanofibers (ANF)-driven interfacial nanofilling and hydrogen-bonds effects in MXenes. Theoretical and experimental results unveil that ANF with unique polarity preferentially interacts with H2O molecules and forms hydrogen bonding networks to restrain oxidative and mechanical attack toward MXene, at the same time, the nanofilling enables interfacial mass transport intensification for increment in redox dynamics. As such, the synergistically coupled ANF-MXene microstructure (AM) unlocks superior mechanical properties for facing hash forces, i.e., tensile strength of 115.2 MPa and toughness of 1.8 MJ m-3, and an ultra-long cycling life with a capacitance retention of 90.7% after 40,000 cycles. Besides, the effective IR thermal camouflage performance (IR-emissivity: 20.9%) further renders the power supply working invisibly after fast charge/discharge-driven heat generation. Moreover, the performances can be well maintained when subjected to strong acid/alkali, high-temperature (200°C), and cryogenic (-196°C) treatments. These results highlight the key role of interfacial species synergy in accelerating versatile and robust energy applications.
中文翻译:
通过界面环境和氢键的协同操纵实现极端环境适应性和超长寿命储能
储能系统的广泛应用带来了对稳定电极的日益需求,这些电极必须对极端环境挑战具有强大的耐受性。MXenes 显示出有前途的伪电容行为,然而,较差的热力学和机械稳定性使其不利于复杂和恶劣环境下的应用。在此,我们通过芳纶纳米纤维 (ANF) 驱动的界面纳米填充和 MXenes 中的氢键效应打破了这些限制。理论和实验结果表明,具有独特极性的 ANF 优先与 H2O 分子相互作用并形成氢键网络以抑制对 MXene 的氧化和机械攻击,同时,纳米填充使界面质量传递增强,从而增加氧化还原动力学。因此,协同耦合的 ANF-MXene 微观结构 (AM) 在面对哈希力时具有卓越的机械性能,即 115.2 MPa 的抗拉强度和 1.8 MJ m-3 的韧性,以及超长的循环寿命,在 40,000 次循环后电容保持率为 90.7%。此外,有效的红外热伪装性能(红外发射率:20.9%)进一步使电源在快速充电/放电驱动的热量产生后无形地工作。此外,在强酸/强碱、高温 (200°C) 和低温 (-196°C) 处理下,可以很好地保持性能。这些结果突出了界面物种协同作用在加速多功能和稳健能源应用方面的关键作用。
更新日期:2024-11-18
中文翻译:
通过界面环境和氢键的协同操纵实现极端环境适应性和超长寿命储能
储能系统的广泛应用带来了对稳定电极的日益需求,这些电极必须对极端环境挑战具有强大的耐受性。MXenes 显示出有前途的伪电容行为,然而,较差的热力学和机械稳定性使其不利于复杂和恶劣环境下的应用。在此,我们通过芳纶纳米纤维 (ANF) 驱动的界面纳米填充和 MXenes 中的氢键效应打破了这些限制。理论和实验结果表明,具有独特极性的 ANF 优先与 H2O 分子相互作用并形成氢键网络以抑制对 MXene 的氧化和机械攻击,同时,纳米填充使界面质量传递增强,从而增加氧化还原动力学。因此,协同耦合的 ANF-MXene 微观结构 (AM) 在面对哈希力时具有卓越的机械性能,即 115.2 MPa 的抗拉强度和 1.8 MJ m-3 的韧性,以及超长的循环寿命,在 40,000 次循环后电容保持率为 90.7%。此外,有效的红外热伪装性能(红外发射率:20.9%)进一步使电源在快速充电/放电驱动的热量产生后无形地工作。此外,在强酸/强碱、高温 (200°C) 和低温 (-196°C) 处理下,可以很好地保持性能。这些结果突出了界面物种协同作用在加速多功能和稳健能源应用方面的关键作用。