当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Field-Programmable Topographic-Morphing Array for General-Purpose Lab-on-a-Chip Systems
Advanced Materials ( IF 27.4 ) Pub Date : 2024-11-18 , DOI: 10.1002/adma.202410604 Yangyang Fan, Huimin Wu, Jiao Wang, Jiu-an Lv
Advanced Materials ( IF 27.4 ) Pub Date : 2024-11-18 , DOI: 10.1002/adma.202410604 Yangyang Fan, Huimin Wu, Jiao Wang, Jiu-an Lv
Lab-on-a-chip systems seek to leverage microfluidic chips to enable small-scale fluid manipulation, holding significant potential to revolutionize science and industry. However, existing microfluidic chips have been largely designed with static fluid structures for specific single-purpose applications, which lack adaptability and flexibility for diverse applications. Inspired by the general-purpose design strategy of the customizable chip of integrated circuit – field programmable gate array whose hardware can be reconfigured via software programming for multifunctionality after manufacturing, a conceptual-new reconfigurable microfluidic chip — field programmable topographic morphing array (FPTMA) is devised with exceptional structural reconfiguration, field programmability, and function scalability for general-purpose lab-on-a-chip systems that beyond the reach of current state-of-art lab-on-chip systems. FPTMA can be software programmed to dynamically shape an elastic meta-interface from the initial smooth structure into desired time-varying topographic structures and thus generate spatiotemporal topographic-morphing-induced capillary forces to actively manipulate multidroplets in parallel and enable real-time reconfiguring diverse microfluidic operations/functions/flow networks as well as workflows. It is envisioned that the development of the FPTMA-driven lab-on-a-chip systems that leverage dynamic interfacial topographies to digitally handle microfluidics would significantly stimulate numerous technological innovations in biology/medicine/chemistry.
中文翻译:
用于通用芯片实验室系统的现场可编程地形变形阵列
芯片实验室系统寻求利用微流体芯片来实现小规模流体操作,具有彻底改变科学和工业的巨大潜力。然而,现有的微流控芯片主要采用静态流体结构设计,用于特定的单一用途应用,缺乏对不同应用的适应性和灵活性。受集成电路可定制芯片——现场可编程门阵列(制造后硬件可通过软件编程重新配置以实现多功能)的通用设计策略的启发,一种概念性的新可重构微流控芯片——现场可编程地形变形阵列(FPTMA)具有卓越的结构重构、现场可编程性和功能可扩展性,适用于当前最先进的芯片实验室系统无法企及的通用芯片实验室系统。FPTMA 可以通过软件编程,以动态地将弹性元界面从初始光滑结构塑造成所需的时变地形结构,从而产生时空地形变形诱导的毛细管力,以主动并行操纵多液滴,并实现实时重新配置不同的微流体操作/功能/流动网络以及工作流程。据设想,FPTMA 驱动的芯片实验室系统的开发利用动态界面地形以数字方式处理微流体,将显着刺激生物/医学/化学领域的众多技术创新。
更新日期:2024-11-18
中文翻译:
用于通用芯片实验室系统的现场可编程地形变形阵列
芯片实验室系统寻求利用微流体芯片来实现小规模流体操作,具有彻底改变科学和工业的巨大潜力。然而,现有的微流控芯片主要采用静态流体结构设计,用于特定的单一用途应用,缺乏对不同应用的适应性和灵活性。受集成电路可定制芯片——现场可编程门阵列(制造后硬件可通过软件编程重新配置以实现多功能)的通用设计策略的启发,一种概念性的新可重构微流控芯片——现场可编程地形变形阵列(FPTMA)具有卓越的结构重构、现场可编程性和功能可扩展性,适用于当前最先进的芯片实验室系统无法企及的通用芯片实验室系统。FPTMA 可以通过软件编程,以动态地将弹性元界面从初始光滑结构塑造成所需的时变地形结构,从而产生时空地形变形诱导的毛细管力,以主动并行操纵多液滴,并实现实时重新配置不同的微流体操作/功能/流动网络以及工作流程。据设想,FPTMA 驱动的芯片实验室系统的开发利用动态界面地形以数字方式处理微流体,将显着刺激生物/医学/化学领域的众多技术创新。