当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Design Principles for Enhancing Both Carrier Mobility and Stretchability in Polymer Semiconductors via Lewis Acid Doping
Advanced Materials ( IF 27.4 ) Pub Date : 2024-11-17 , DOI: 10.1002/adma.202411572 Yu-Ching Weng, Chung-Chieh Kang, Ting-Wei Chang, Yi-Ting Tsai, Shahid Khan, Tzu-Ming Hung, Chien-Chung Shih
Advanced Materials ( IF 27.4 ) Pub Date : 2024-11-17 , DOI: 10.1002/adma.202411572 Yu-Ching Weng, Chung-Chieh Kang, Ting-Wei Chang, Yi-Ting Tsai, Shahid Khan, Tzu-Ming Hung, Chien-Chung Shih
With the rise of skin-like electronics, devices are increasingly coming into close contact with the human body, creating a demand for polymer semiconductors (PSCs) that combine stretchability with reliable electrical performance. However, balancing mechanical robustness with high carrier mobility remains a challenge. To address this, tris(pentafluorophenyl)borane (BCF) for Lewis acid doping is proposed to improve charge mobility while enhancing stretchability by increasing structural disorder. Through systematic investigation, several key structural principles have been identified to maximize the effectiveness of BCF doping in stretchable PSCs. Notably, increasing the lamellar stacking distance and reducing crystallinity facilitate the incorporation of BCF into the alkyl side-chain regions, thereby enhancing both mobility and stretchability. Conversely, stronger Lewis base groups in the main chain negatively impact these improvements. These results demonstrate that with a small addition of BCF, a two-fold increase in carrier mobility is achieved while simultaneously enhancing the crack onset strain to 100%. Furthermore, doped PSCs exhibit stable mobility retention under repeated 30% strains over 1000 cycles. This method of decoupling carrier mobility from mechanical properties opens up new avenues in the search for high-mobility stretchable PSCs.
中文翻译:
通过 Lewis acid 掺杂增强聚合物半导体载流子迁移率和可拉伸性的设计原理
随着类皮肤电子产品的兴起,设备越来越多地与人体紧密接触,从而产生了对兼具可拉伸性和可靠电气性能的聚合物半导体 (PSC) 的需求。然而,平衡机械稳健性和高载流子迁移率仍然是一个挑战。为了解决这个问题,提出了用于路易斯酸掺杂的三(五氟苯基)硼烷 (BCF) 来提高电荷迁移率,同时通过增加结构无序来增强可拉伸性。通过系统研究,已经确定了几个关键结构原理,以最大限度地提高 BCF 掺杂在可拉伸 PSC 中的有效性。值得注意的是,增加层状堆叠距离和降低结晶度有助于 BCF 掺入烷基侧链区域,从而增强迁移率和可拉伸性。相反,主链中较强的 Lewis 碱基会对这些改进产生负面影响。这些结果表明,少量添加 BCF 后,载体迁移率提高了两倍,同时将裂纹起始应变提高到 100%。此外,掺杂的 PSC 在 1000 次循环的重复 30% 应变下表现出稳定的迁移率保持。这种将载流子迁移率与机械性能解耦的方法为寻找高迁移率的可拉伸 PSC 开辟了新的途径。
更新日期:2024-11-18
中文翻译:
通过 Lewis acid 掺杂增强聚合物半导体载流子迁移率和可拉伸性的设计原理
随着类皮肤电子产品的兴起,设备越来越多地与人体紧密接触,从而产生了对兼具可拉伸性和可靠电气性能的聚合物半导体 (PSC) 的需求。然而,平衡机械稳健性和高载流子迁移率仍然是一个挑战。为了解决这个问题,提出了用于路易斯酸掺杂的三(五氟苯基)硼烷 (BCF) 来提高电荷迁移率,同时通过增加结构无序来增强可拉伸性。通过系统研究,已经确定了几个关键结构原理,以最大限度地提高 BCF 掺杂在可拉伸 PSC 中的有效性。值得注意的是,增加层状堆叠距离和降低结晶度有助于 BCF 掺入烷基侧链区域,从而增强迁移率和可拉伸性。相反,主链中较强的 Lewis 碱基会对这些改进产生负面影响。这些结果表明,少量添加 BCF 后,载体迁移率提高了两倍,同时将裂纹起始应变提高到 100%。此外,掺杂的 PSC 在 1000 次循环的重复 30% 应变下表现出稳定的迁移率保持。这种将载流子迁移率与机械性能解耦的方法为寻找高迁移率的可拉伸 PSC 开辟了新的途径。