当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanocellulose-Based Interfacial Solar Evaporator: Integrating Sustainable Materials and Micro-/Nano-Architectures for Solar Desalination
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-11-17 , DOI: 10.1002/adfm.202414576
Youngsang Ko, Suji Lee, Jieun Jang, Goomin Kwon, Kangyun Lee, Youngho Jeon, Ajeong Lee, Teahoon Park, Jeonghun Kim, Jungmok You

Clean-water harvesting through solar interfacial evaporation technology has recently emerged as a strategy for resolving global water scarcity. In this study, rapid carbon-dioxide-laser-induced carbonization and facile ice-templating is employed to construct a cellulose-based solar evaporator bearing a hybrid multi-layer micro-/nano-architecture (i.e., a laser-induced carbon (LC) nanostructure and a cellulose aerogel (CA) nano/microstructure). The LC exhibits a light-absorbing/photothermal nanoporous carbon structure that offers high light absorption and multiple light scattering. Additionally, the CA exhibits numerous nanopores and unidirectional microchannels that facilitate rapid water transport via capillary action. This hybrid LC/CA micro-/nano-architecture enabled rapid vapor generation with an average water evaporation rate (ν) of 1.62 kg m−2 h−1 and an evaporation efficiency (η) of 66.6%. To further enhance the evaporation performance, a polydimethylsiloxane (PDMS) layer is coated onto the side of the LC/CA evaporator to increase its floatability in the simulated water; ν and η of the PDMS-coated LC/CA evaporator (LC/CA/PDMS) increased to 1.9 kg m−2 h−1 and 83.8%, respectively. Additionally, the LC/CA/PDMS evaporator exhibited a high ν value of 1.68 kg m−2 h−1 in simulated seawater, originating from excellent resistance to salt accumulation via its self-cleaning ability. Furthermore, the solar evaporator exhibited scalability for fabrication as well as biodegradable properties.

中文翻译:


基于纳米纤维素的界面太阳能蒸发器:集成可持续材料和微/纳米结构用于太阳能海水淡化



通过太阳能界面蒸发技术收集清洁水最近已成为解决全球水资源短缺的一种策略。本研究采用快速二氧化碳激光诱导碳化和简单的冰模板构建了具有混合多层微/纳米结构(即激光诱导碳 (LC) 纳米结构和纤维素气凝胶 (CA) 纳米/微结构)的纤维素基太阳能蒸发器。LC 表现出吸光/光热纳米多孔碳结构,具有高光吸收和多重光散射。此外,CA 表现出许多纳米孔和单向微通道,可通过毛细管作用促进水的快速运输。这种混合 LC/CA 微/纳结构能够快速生成蒸汽,平均水分蒸发速率 (ν) 为 1.62 kg m-2 h-1,蒸发效率 (η) 为 66.6%。为了进一步提高蒸发性能,在 LC/CA 蒸发器的侧面涂覆了聚二甲基硅氧烷 (PDMS) 层,以增加其在模拟水中的可浮性;PDMS 涂层的 LC/CA 蒸发器 (LC/CA/PDMS) 的 ν 和 η 分别增加到 1.9 kg m-2 h-1 和 83.8%。此外,LC/CA/PDMS 蒸发器在模拟海水中表现出 1.68 kg m-2 h-1 的高 ν 值,这源于其自清洁能力对盐积累的出色抵抗力。此外,太阳能蒸发器表现出制造的可扩展性以及可生物降解的特性。
更新日期:2024-11-18
down
wechat
bug