当前位置: X-MOL 学术Inorg. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface plasmon resonance and structure defects synergetic effect of ZnCdS2/NiMoO4@Cu Z-scheme heterojunction for enhanced photocatalytic CO2 reduction to CH4
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2024-11-18 , DOI: 10.1039/d4qi02332c
Zhentao Hu, Lei Huang, Bojing Sun, Dongfang Hou, Xiu-Qing Qiao, Meidi Wang, Huijuan Ma, Dong-Sheng Li

Photocatalytic carbon dioxide reduction to solar fuels is one of the promising strategies to solve resource depletion and global climate warming. Nevertheless, the poor product selectivity greatly limits its practical application. Herein, we present a Cu nanoparticle-modified ZnCdS2/NiMoO4 Z-scheme heterojunction photocatalyst with highly selective and stable. It is worth noting that the hydrophobicity of NiMoO4 can effectively inhibit the adsorption of water, while forming a Z-scheme heterostructure with defective ZnCdS2, and thus inhibiting hydrogen evolution and improving the separation efficiency of photogenerated carriers. Meanwhile, Cu nanoparticles with surface plasmon resonance effect generate amount high-energy hot electrons during photoexcitation, which not only greatly increases the photogenerated electron density on the surface of the catalyst, resulting in a higher probability of multiple electron reactions or reduced state products, but also effectively reduces the activation energy barrier for CO2 reduction through photothermal effect. Consequently, ZCS/NMO@Cu Z-scheme heterojunction exhibits nearly 100% selectivity of CH4 with eight-electron involved reduction reaction, and outstanding CH4 yield of 92.17 μmol g-1 h-1 without sacrificial agent and co-catalyst. Furthermore, the CO2 reduction mechanism is confirmed through in-situ Fourier transform infrared spectroscopy (FTIR) analysis. This work will provide meaningful prospects for designing a carbon dioxide reduction photocatalyst with high conversion and selection.

中文翻译:


ZnCdS2/NiMoO4@Cu Z 型异质结表面等离子体共振与结构缺陷协同效应增强光催化 CO2 还原为 CH4



光催化二氧化碳还原为太阳能燃料是解决资源枯竭和全球气候变暖的有前途的策略之一。然而,较差的产品选择性极大地限制了其实际应用。在此,我们提出了一种 Cu 纳米颗粒改性的 ZnCdS2/NiMoO4 Z 型异质结光催化剂,具有高选择性和稳定性。值得注意的是,NiMoO4 的疏水性可以有效抑制水的吸附,同时与有缺陷的 ZnCdS2 形成 Z 型异质结构,从而抑制析氢,提高光生载流子的分离效率。同时,具有表面等离子体共振效应的 Cu 纳米粒子在光激发过程中产生大量高能热电子,不仅大大增加了催化剂表面的光生电子密度,导致多电子反应或还原态产物的概率更高,而且通过光热效应有效降低了 CO2 还原的活化能势垒。因此,ZCS/NMO@Cu Z 型异质结在涉及 8 个电子的还原反应中表现出对 CH4 的近 100% 选择性,并且在没有牺牲剂和助催化剂的情况下表现出 92.17 μmol g-1 h-1 的出色 CH4 产率。此外,通过原位傅里叶变换红外光谱 (FTIR) 分析证实了 CO2 还原机制。这项工作将为设计具有高转化率和选择性的二氧化碳还原光催化剂提供有意义的前景。
更新日期:2024-11-18
down
wechat
bug