当前位置: X-MOL 学术Ind. Eng. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oxidative Cracking of n-Hexane to Light Olefins over VOx/MgO-γAl2O3 Using Lattice Oxygen: Performance Evaluation and Machine Learning Modeling
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-11-18 , DOI: 10.1021/acs.iecr.4c03363
Hussein K. Amusa, Sagir Adamu, Akolade Idris Bakare, Tajudeen A. Oyehan, Abeer S. Arjah, Saad A. Al-Bogami, Sameer Al-Ghamdi, Shaikh A. Razzak, Mohammad M. Hossain

This study investigates VOx/MgO-γAl2O3 in the oxidative cracking ofn-hexane to produce light olefins in the absence of gas-phase oxygen. The catalysts were prepared with varying mass ratios of MgO/γAl2O3(1:2, 1:1, and 2:1), while the VOx loading was maintained at 10 wt %. Among the synthesized catalysts, VOx/MgO-γAl2O3 1:1 showed superior catalytic activity, with 89.1% n-hexane conversion and 92.6% light olefin selectivity. Introducing an appropriate amount of MgO enhanced the dispersion of VOx active species, balanced the acidity, and suppressed the oxidation of hydrocarbons. Additionally, a machine learning model was developed to predict oxidative cracking products’ yields. The model, based on 44 data points from this study and literature, predicted n-hexane conversion, olefin yield, carbon oxide yield, methane yield, and paraffin yield using catalyst formulations, temperature, and time as inputs. The model showed a high correlation (R2) of 0.99 and RMSE values between 1.6 and 8.5, highlighting its strong predictive capability.

中文翻译:


使用晶格氧在 VOx/MgO-γAl2O3 上氧化裂解正己烷制轻质烯烃:性能评估和机器学习建模



本研究研究了 VOx/MgO-γAl2O3 在不存在气相氧的情况下,正己烷氧化裂解生成轻质烯烃。用不同质量比的 MgO/γAl2O3(1:2、1:1 和 2:1)制备催化剂,而 VOx 负载量保持在 10 wt %。在合成的催化剂中,VOx/MgO-γAl2O3 1:1 表现出优异的催化活性,具有 89.1% 的正己烷转化率和 92.6% 的轻烯烃选择性。引入适量的 MgO 增强了 VOx 活性物质的分散性,平衡了酸度,并抑制了碳氢化合物的氧化。此外,还开发了一种机器学习模型来预测氧化裂化产物的产量。该模型基于本研究和文献的 44 个数据点,使用催化剂配方、温度和时间作为输入来预测己烷转化率、烯烃产率、氧化碳产率、甲烷产率和石蜡产率。该模型显示出 0.99 的高相关性 (R2),RMSE 值在 1.6 和 8.5 之间,突出了其强大的预测能力。
更新日期:2024-11-18
down
wechat
bug