当前位置: X-MOL 学术Ultrason. Sonochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
AI-powered ultrasonic thermometry for HIFU therapy in deep organ
Ultrasonics Sonochemistry ( IF 8.7 ) Pub Date : 2024-11-12 , DOI: 10.1016/j.ultsonch.2024.107154
Shunyao Luan, Yongshuo Ji, Yumei Liu, Linling Zhu, Hong Zhao, Haoyu Zhou, Ke Li, Weizhen Zhu, Benpeng Zhu

High-intensity focused ultrasound (HIFU) is considered as an important non-invasive way for tumor ablation in deep organs. However, accurate real-time monitoring of the temperature field within HIFU focal area remains a challenge. Although ultrasound technology, compared with other approaches, is a good choice for noninvasive and real-time monitoring on the temperature distribution, traditional ultrasonic thermometry mainly relies on the backscattered signal, which is difficult for high temperature (>50 °C) measurement. Given that artificial intelligence (AI) shows significant potential for biomedical applications, we propose an AI-powered ultrasonic thermometry using an end-to-end deep neural network termed Breath-guided Multimodal Teacher-Student (BMTS), which possesses the capability to elucidate the interaction between HIFU and complex heterogeneous biological media. It has been demonstrated experimentally that two-dimension temperature distribution within HIFU focal area in deep organ can be accurately reconstructed with an average error and a frame speed of 0.8 °C and 0.37 s, respectively. Most importantly, the maximum measurable temperature for ultrasonic technology has been successfully expanded to a record value of 67 °C. This breakthrough indicates that the development of AI-powered ultrasonic thermometry is beneficial for precise HIFU therapy planning in the future.

中文翻译:


人工智能驱动的超声测温法用于深部器官 HIFU 治疗



高强度聚焦超声 (HIFU) 被认为是深部器官肿瘤消融的重要非侵入性方法。然而,准确实时监测 HIFU 病灶区域内的温度场仍然是一个挑战。虽然超声技术与其他方法相比,是无创、实时监测温度分布的较佳选择,但传统的超声测温法主要依赖于背向散射信号,难以进行高温(>50 °C)测量。鉴于人工智能 (AI) 在生物医学应用方面显示出巨大的潜力,我们提出了一种人工智能驱动的超声测温法,使用称为呼吸引导多模态师生 (BMTS) 的端到端深度神经网络,它能够阐明 HIFU 与复杂的异质生物介质之间的相互作用。实验证明,深部器官 HIFU 病灶区域内的二维温度分布可以准确重建,平均误差和 0.8 °C 和 0.37 s 的帧速分别为 0.8 °C 和 0.37 s。最重要的是,超声波技术的最高可测量温度已成功扩展到创纪录的 67 °C。 这一突破表明,人工智能超声测温技术的发展有利于未来精确的 HIFU 治疗规划。
更新日期:2024-11-12
down
wechat
bug