当前位置:
X-MOL 学术
›
Nano Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Strain-insensitive Stretchable Triboelectric Tactile Sensors via Interfacial Stress Dispersion
Nano Energy ( IF 16.8 ) Pub Date : 2024-11-16 , DOI: 10.1016/j.nanoen.2024.110482 Liming Zhang, Zhenqiu Gao, Hao Lei, Yina Liu, Jixin Yi, Ao Wang, Haicheng Gu, Jia Shi, Peixuan Zhang, Zhen Wea, Xuhui Sua
Nano Energy ( IF 16.8 ) Pub Date : 2024-11-16 , DOI: 10.1016/j.nanoen.2024.110482 Liming Zhang, Zhenqiu Gao, Hao Lei, Yina Liu, Jixin Yi, Ao Wang, Haicheng Gu, Jia Shi, Peixuan Zhang, Zhen Wea, Xuhui Sua
The accuracy and reliability of flexible tactile sensors are often compromised by the deformation of functional materials and fluctuations in the structureactivity relationship during bending or stretching. In this work, a highly strain-insensitive stretchable triboelectric tactile sensor (SS-TTS) is developed via an interfacial stress dispersion strategy. By integrating softness-stiffness materials with an interfacial circular structure (ICS), the concentrated interfacial stress is induced to disperse onto a soft substrate, effectively suppressing strain in the sensing region during stretching. When the optimal geometric parameters of ICS (n=10, d = 6.0 mm) are used, the sensor demonstrates ultrahigh strain insensitivity (98%) in the stretchable range of 0~70% with a wide pressure range up to 150 kPa. Furthermore, the SS-TTS is seamlessly incorporated into a wearable wristband for precise monitoring of pulse signals regardless of human wrist size. This demonstrates its potential for personalized health monitoring applications. Additionally, a 3×3 triboelectric sensor array is constructed to function as a strain-insensitive stretchable touch panel for tactile imaging and trajectory recognition, further expanding the sensor's versatility. This work paves the way for the future design of stretchable electronics tailored for intelligent sensing applications under deformable conditions.
中文翻译:
通过界面应力分散实现对应变不敏感的可拉伸摩擦电触觉传感器
柔性触觉传感器的准确性和可靠性通常会受到功能材料的变形和弯曲或拉伸过程中结构 活动关系波动的影响。在这项工作中,通过界面应力分散策略开发了一种高度应变不敏感的可拉伸摩擦电触觉传感器 (SS-TTS)。通过将柔软刚度材料与界面圆形结构 (ICS) 集成,诱导集中的界面应力分散到柔软的基材上,有效抑制拉伸过程中传感区域的应变。当使用 ICS 的最佳几何参数 (n=10, d = 6.0mm) 时,传感器在 0~70% 的可拉伸范围内表现出超高的应变不敏感性 (98%),压力范围高达 150 kPa。此外,SS-TTS 无缝集成到可穿戴腕带中,无论人的手腕大小如何,都可以精确监测脉冲信号。这证明了它在个性化健康监测应用中的潜力。此外,3×3 摩擦电传感器阵列的构造用作应变不敏感的可拉伸触摸屏,用于触觉成像和轨迹识别,进一步扩展了传感器的多功能性。这项工作为未来为可变形条件下的智能传感应用量身定制的可拉伸电子设备的设计铺平了道路。
更新日期:2024-11-17
中文翻译:
通过界面应力分散实现对应变不敏感的可拉伸摩擦电触觉传感器
柔性触觉传感器的准确性和可靠性通常会受到功能材料的变形和弯曲或拉伸过程中结构 活动关系波动的影响。在这项工作中,通过界面应力分散策略开发了一种高度应变不敏感的可拉伸摩擦电触觉传感器 (SS-TTS)。通过将柔软刚度材料与界面圆形结构 (ICS) 集成,诱导集中的界面应力分散到柔软的基材上,有效抑制拉伸过程中传感区域的应变。当使用 ICS 的最佳几何参数 (n=10, d = 6.0mm) 时,传感器在 0~70% 的可拉伸范围内表现出超高的应变不敏感性 (98%),压力范围高达 150 kPa。此外,SS-TTS 无缝集成到可穿戴腕带中,无论人的手腕大小如何,都可以精确监测脉冲信号。这证明了它在个性化健康监测应用中的潜力。此外,3×3 摩擦电传感器阵列的构造用作应变不敏感的可拉伸触摸屏,用于触觉成像和轨迹识别,进一步扩展了传感器的多功能性。这项工作为未来为可变形条件下的智能传感应用量身定制的可拉伸电子设备的设计铺平了道路。