当前位置:
X-MOL 学术
›
Energy Storage Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Constructing interfacial molecular layer coupled with Zn2+ transfer/deposition kinetics modulation toward deeply reversible Zn anodes
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-11-17 , DOI: 10.1016/j.ensm.2024.103909 Shangqing Jiao, Yulong Gao, Weigang Zhang, Zhen Xue, Yudong Wu, Zhiqian Cao
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-11-17 , DOI: 10.1016/j.ensm.2024.103909 Shangqing Jiao, Yulong Gao, Weigang Zhang, Zhen Xue, Yudong Wu, Zhiqian Cao
Irreversible Zn dendrite formation and hydrogen evolution reactions (HER) have significantly impeded the large-scale commercial deployment of aqueous zinc-metal batteries (AZMBs). Herein, we proposed an innovative interfacial strategy activated by the biomacromolecule Pullulan (Pul) on the surface of metal zinc anodes (ZMAs) within the electrolyte system. The combination of comprehensive experimental results and simulation calculations demonstrated that the spontaneous assembly of the interfacial molecular layer (IML), facilitated by the adaptive adsorption of Pul molecules, not only triggers the formation of a Zn²⁺-concentrated region and effectively balances ionic flux, but also simultaneously transforms the nucleation growth pattern of Zn2+ into an instantaneous and progressive hybridized mechanism, reconfiguring the Zn2+ transfer/deposition kinetics at the heterogeneous electrode/electrolyte interface. Moreover, the IML provides a stable shielding effect for hydrated hydrogen with high thermodynamic activity and SO42− at the solid-liquid interface. Therefore, a smooth and compact Zn deposition layer devoid of dendritic growth is achieved during subsequent plating processes. As a result, Zn||Zn symmetric cells utilizing modified electrolytes exhibit remarkable plating/stripping performance exceeding 1800 hours without significant voltage fluctuations, which contributes to the exceptional long-term durability observed in Zn||CNTs@MnO2 batteries.
中文翻译:
构建界面分子层与 Zn2+ 转移/沉积动力学调制耦合到深度可逆 Zn 阳极
不可逆的 Zn 枝晶形成和析氢反应 (HER) 严重阻碍了水性锌金属电池 (AZMB) 的大规模商业部署。在此,我们提出了一种由生物大分子普鲁兰多糖 (Pul) 在电解质系统内金属锌阳极 (ZMAs) 表面激活的创新界面策略。综合实验结果与仿真计算相结合,表明界面分子层 (IML) 的自发组装,在 Pul 分子的自适应吸附的推动下,不仅触发了 Zn²⁺ 集中区的形成并有效平衡了离子通量,而且同时将 Zn2+ 的成核生长模式转化为瞬时渐进的杂化机制, 在非均相电极/电解质界面处重新配置 Zn2+ 转移/沉积动力学。此外,IML 在固液界面处为具有高热力学活性和 SO42− 的氢合氢提供稳定的屏蔽作用。因此,在后续电镀过程中可实现光滑致密的 Zn 沉积层,没有树枝状生长。因此,Zn||采用改性电解质的 Zn 对称电池表现出超过 1800 小时的出色电镀/剥离性能,且没有明显的电压波动,这有助于在 Zn||CNTs@MnO2 节电池。
更新日期:2024-11-17
中文翻译:
构建界面分子层与 Zn2+ 转移/沉积动力学调制耦合到深度可逆 Zn 阳极
不可逆的 Zn 枝晶形成和析氢反应 (HER) 严重阻碍了水性锌金属电池 (AZMB) 的大规模商业部署。在此,我们提出了一种由生物大分子普鲁兰多糖 (Pul) 在电解质系统内金属锌阳极 (ZMAs) 表面激活的创新界面策略。综合实验结果与仿真计算相结合,表明界面分子层 (IML) 的自发组装,在 Pul 分子的自适应吸附的推动下,不仅触发了 Zn²⁺ 集中区的形成并有效平衡了离子通量,而且同时将 Zn2+ 的成核生长模式转化为瞬时渐进的杂化机制, 在非均相电极/电解质界面处重新配置 Zn2+ 转移/沉积动力学。此外,IML 在固液界面处为具有高热力学活性和 SO42− 的氢合氢提供稳定的屏蔽作用。因此,在后续电镀过程中可实现光滑致密的 Zn 沉积层,没有树枝状生长。因此,Zn||采用改性电解质的 Zn 对称电池表现出超过 1800 小时的出色电镀/剥离性能,且没有明显的电压波动,这有助于在 Zn||CNTs@MnO2 节电池。