当前位置:
X-MOL 学术
›
Adv. Theory Simul.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Topology Optimization Enabled High Performance and Easy‐to‐Fabricate Hybrid Photonic Crystals
Advanced Theory and Simulations ( IF 2.9 ) Pub Date : 2024-11-17 , DOI: 10.1002/adts.202400893 Tianyu Zhang, Weibai Li, Baohua Jia, Xiaodong Huang
Advanced Theory and Simulations ( IF 2.9 ) Pub Date : 2024-11-17 , DOI: 10.1002/adts.202400893 Tianyu Zhang, Weibai Li, Baohua Jia, Xiaodong Huang
Photonic crystals (PtCs) can confine and guide electromagnetic waves within specific frequency ranges, forming the foundation for promising optical applications. To numerically design PtCs with broad bandgaps, materials with high dielectric constants are favored. However, fabricating these high dielectric constant materials into microstructures is extremely challenging and it suffers from limitation of low fabricating resolution. To address this problem, this paper proposes hybrid microstructures composed of an easy‐to‐fabricate core and a high dielectric constant coating layer, which leverages the strength of both materials. This paper establishes a topology optimization algorithm to generate these PtCs with maximized bandgaps. Numerical examples demonstrate the effectiveness of the proposed method in generating optimized unit cells for both transverse magnetic (TM) and transverse electric (TE) modes. The hybrid PtCs offer unprecedented opportunities for the fabrication of optical devices, encouraging further research on multimaterial optical systems and advanced optimization methods to explore photonic bandgap materials beyond those offered by the current photonic technology.
中文翻译:
拓扑优化实现了高性能和易于制造的混合光子晶体
光子晶体 (PtC) 可以限制和引导特定频率范围内的电磁波,为有前途的光学应用奠定了基础。为了对具有宽带隙的 PtC 进行数值设计,首选具有高介电常数的材料。然而,将这些高介电常数材料制造成微观结构极具挑战性,并且受到制造分辨率低的限制。为了解决这个问题,本文提出了一种混合微结构,该结构由易于制造的芯和高介电常数涂层层组成,它利用了这两种材料的强度。本文建立了一种拓扑优化算法来生成具有最大带隙的 PtC。数值实例证明了所提出的方法在为横向磁 (TM) 和横向电 (TE) 模式生成优化晶胞方面的有效性。混合 PtC 为光学器件的制造提供了前所未有的机会,鼓励对多材料光学系统和先进优化方法的进一步研究,以探索超越当前光子技术提供的光子带隙材料。
更新日期:2024-11-17
中文翻译:
拓扑优化实现了高性能和易于制造的混合光子晶体
光子晶体 (PtC) 可以限制和引导特定频率范围内的电磁波,为有前途的光学应用奠定了基础。为了对具有宽带隙的 PtC 进行数值设计,首选具有高介电常数的材料。然而,将这些高介电常数材料制造成微观结构极具挑战性,并且受到制造分辨率低的限制。为了解决这个问题,本文提出了一种混合微结构,该结构由易于制造的芯和高介电常数涂层层组成,它利用了这两种材料的强度。本文建立了一种拓扑优化算法来生成具有最大带隙的 PtC。数值实例证明了所提出的方法在为横向磁 (TM) 和横向电 (TE) 模式生成优化晶胞方面的有效性。混合 PtC 为光学器件的制造提供了前所未有的机会,鼓励对多材料光学系统和先进优化方法的进一步研究,以探索超越当前光子技术提供的光子带隙材料。