当前位置:
X-MOL 学术
›
Artif. Intell.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Separate but equal: Equality in belief propagation for single-cycle graphs
Artificial Intelligence ( IF 5.1 ) Pub Date : 2024-11-08 , DOI: 10.1016/j.artint.2024.104243 Erel Cohen, Ben Rachmut, Omer Lev, Roie Zivan
Artificial Intelligence ( IF 5.1 ) Pub Date : 2024-11-08 , DOI: 10.1016/j.artint.2024.104243 Erel Cohen, Ben Rachmut, Omer Lev, Roie Zivan
Belief propagation is a widely used, incomplete optimization algorithm whose main theoretical properties hold only under the assumption that beliefs are not equal. Nevertheless, there is substantial evidence to suggest that equality between beliefs does occur. A published method to overcome belief equality, which is based on the use of unary function-nodes, is commonly assumed to resolve the problem.
中文翻译:
分离但相等:单周期图的置信度传播相等
信念传播是一种广泛使用的、不完整的优化算法,其主要理论属性仅在信念不相等的假设下成立。尽管如此,有大量证据表明信仰之间的平等确实存在。通常假设一种已发布的克服信念相等的方法,该方法基于使用一元函数节点来解决问题。
更新日期:2024-11-08
中文翻译:
分离但相等:单周期图的置信度传播相等
信念传播是一种广泛使用的、不完整的优化算法,其主要理论属性仅在信念不相等的假设下成立。尽管如此,有大量证据表明信仰之间的平等确实存在。通常假设一种已发布的克服信念相等的方法,该方法基于使用一元函数节点来解决问题。