当前位置:
X-MOL 学术
›
J. Mech. Phys. Solids
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nonlinear soliton spiral induces coupled multimode dynamics in multi-stable dissipative metamaterials
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-10-22 , DOI: 10.1016/j.jmps.2024.105920 Wu Zhou, Yi-Ze Wang
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-10-22 , DOI: 10.1016/j.jmps.2024.105920 Wu Zhou, Yi-Ze Wang
With the robust and self-trapped properties, recent advances about soliton dynamics in multi-stable mechanical metamaterials have led to many innovative techniques from signal processing to robotics. This work proposes a multi-stable mechanical metamaterial driven by nonlinear dissipative solitons, in which the coupling and decoupling of multiple locomotion modes can be achieved. Based on a cylinder network with asymmetric energy landscape, the uniform field model of Landau theory is developed. During the theoretical calculation, the analytical solutions of several dissipative solitons are derived, which allow multiple special behaviors of solitary waves, such as wave velocity gaps, directional propagation and spiral phase transition. By incorporating such effects into robotic designs, a variety of complex movements can be achieved by a single structure, including hopping, rolling, rotating, swinging, bending and translational components. In particular, as excitation positions change, the mechanical metamaterial can flexibly switch multiple locomotion modes without changing configurations, e.g., spinning and spin-less, straight and oblique as well as coupled multimode movements. This work wishes to provide some new inspirations for the applications of nonlinear elastic wave metamaterials and phase transition theory in robotics.
中文翻译:
非线性孤子螺在多稳态耗散超材料中诱导耦合多模态动力学
凭借稳健和自捕获的特性,多稳态机械超材料中孤子动力学的最新进展导致了从信号处理到机器人技术的许多创新技术。这项工作提出了一种由非线性耗散孤子驱动的多稳态机械超材料,其中可以实现多种运动模式的耦合和解耦。基于具有不对称能量景观的圆柱网络,建立了朗道理论的均匀场模型。在理论计算过程中,推导出了几种耗散孤子的解析解,这些解允许孤波的多种特殊行为,例如波速间隙、定向传播和螺旋相变。通过将这种效果整合到机器人设计中,可以通过单个结构实现各种复杂的运动,包括跳跃、滚动、旋转、摆动、弯曲和平移组件。特别是,当激励位置发生变化时,机械超材料可以灵活地切换多种运动模式,而无需改变配置,例如旋转和无旋转、直线和倾斜以及耦合的多模式运动。这项工作希望为非线性弹性波超材料和相变理论在机器人学中的应用提供一些新的启发。
更新日期:2024-10-22
中文翻译:
非线性孤子螺在多稳态耗散超材料中诱导耦合多模态动力学
凭借稳健和自捕获的特性,多稳态机械超材料中孤子动力学的最新进展导致了从信号处理到机器人技术的许多创新技术。这项工作提出了一种由非线性耗散孤子驱动的多稳态机械超材料,其中可以实现多种运动模式的耦合和解耦。基于具有不对称能量景观的圆柱网络,建立了朗道理论的均匀场模型。在理论计算过程中,推导出了几种耗散孤子的解析解,这些解允许孤波的多种特殊行为,例如波速间隙、定向传播和螺旋相变。通过将这种效果整合到机器人设计中,可以通过单个结构实现各种复杂的运动,包括跳跃、滚动、旋转、摆动、弯曲和平移组件。特别是,当激励位置发生变化时,机械超材料可以灵活地切换多种运动模式,而无需改变配置,例如旋转和无旋转、直线和倾斜以及耦合的多模式运动。这项工作希望为非线性弹性波超材料和相变理论在机器人学中的应用提供一些新的启发。