当前位置: X-MOL 学术Tectonophysics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The improved Moho depth imaging in the Arabia-Eurasia collision zone: A machine learning approach integrating seismic observations and satellite gravity data
Tectonophysics ( IF 2.7 ) Pub Date : 2024-11-07 , DOI: 10.1016/j.tecto.2024.230553
Vahid Teknik

The Arabia-Eurasia convergences created one of the earth's topographic highs on the Central Tethys collisional belt. Despite the area's geological significance, a comprehensive and high-resolution map of Moho depth has been lacking due to the sparse and uneven distribution of seismically constrained Moho depth data. This study addresses this deficiency by compiling an extensive dataset of nearly 2500 seismically measured Moho depth points from 68 seismic local scale studies, resulting in the development of an updated seismically constrained Moho depth model (S-Moho) at a 0.5° × 0.5° spatial resolution. Despite some coverage gaps in the remote areas, the S-Moho model offers a more detailed view than previously available. To further improve the coverage of the S-Moho depth model, an incremental data-driven approach was employed. Initially, a gravity-based regression Moho depth model (SB-Moho) was developed by correlating S-Moho depth points with corresponding Bouguer anomalies. However, its accuracy was constrained by unaccounted isostatic and non-isostatic components. To address this limitation, a sliding window approach was applied to derive a windowed SB-Moho model (WSB-Moho). Additionally, a machine learning-based Moho model (ML-Moho) was developed using seismic Moho depth points along with 11 predictive variables. Both WSB-Moho and ML-Moho models demonstrated consistent and smooth Moho depth variations. The Zagros region reveals a prominent NW-SE oriented Moho depression (45-60 km thick), attributed to the underthrusting of the Arabian Plate beneath the Iranian Plateau. The models suggest that crustal thickening extends beyond tectonic boundaries, likely influenced by the dip of suture zones. In contrast, the crustal thickening in eastern Anatolia, northwest of the Zagros, is less pronounced, indicating different geodynamic processes. Strike-slip faulting and magmatic activity in this area contribute to a broader distribution of deformation compared to the more localized crustal thickening in the Zagros. In southeastern Zagros, strike-slip faults in central Iran accommodate much of the northward convergence of the Arabian Plate, thereby limiting the extent of crustal thickening.

中文翻译:


阿拉伯-欧亚大陆碰撞区改进的 Moho 深度成像:一种整合地震观测和卫星重力数据的机器学习方法



阿拉伯半岛-欧亚大陆的交汇在特提斯中央碰撞带上创造了地球上的地形高点之一。尽管该地区具有地质意义,但由于受地震限制的 Moho 深度数据分布稀疏且不均匀,因此一直缺乏全面且高分辨率的 Moho 深度地图。本研究通过编译来自 68 个地震局部尺度研究的近 2500 个地震测量的 Moho 深度点的广泛数据集来解决这一缺陷,从而开发出 0.5° × 0.5° 空间分辨率的更新的地震约束 Moho 深度模型 (S-Moho)。尽管偏远地区存在一些覆盖差距,但 S-Moho 模型提供了比以前更详细的视图。为了进一步提高 S-Moho 深度模型的覆盖率,采用了一种增量数据驱动的方法。最初,通过将 S-Moho 深度点与相应的 Bouguer 异常相关联,开发了基于重力的回归 Moho 深度模型 (SB-Moho)。然而,它的准确性受到未解释的等静压和非等静压分量的限制。为了解决这一限制,应用了滑动窗口方法来推导出窗口化 SB-Moho 模型 (WSB-Moho)。此外,还使用地震 Moho 深度点和 11 个预测变量开发了基于机器学习的 Moho 模型 (ML-Moho)。WSB-Moho 和 ML-Moho 模型都表现出一致且平滑的 Moho 深度变化。扎格罗斯地区揭示了一个突出的西北-东南方向的莫霍洼地(45-60 公里厚),这归因于伊朗高原下方阿拉伯板块的下冲。这些模型表明,地壳增厚延伸到构造边界之外,可能受到缝合带倾角的影响。 相比之下,扎格罗斯山脉西北部的安纳托利亚东部的地壳增厚不太明显,表明不同的地球动力学过程。与扎格罗斯地区更局部的地壳增厚相比,该地区的走滑断层和岩浆活动导致了更广泛的变形分布。在扎格罗斯东南部,伊朗中部的走滑断层容纳了阿拉伯板块向北汇合的大部分区域,从而限制了地壳增厚的程度。
更新日期:2024-11-07
down
wechat
bug