当前位置: X-MOL 学术Tectonophysics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Seismic structure of Iceland revealed by ambient noise Rayleigh wave tomography
Tectonophysics ( IF 2.7 ) Pub Date : 2024-09-23 , DOI: 10.1016/j.tecto.2024.230511
Sen Zhang, Juqing Chen, Lei Pan, Zhengbo Li, Xiaofei Chen

As it is an ideal location for studying plume–ridge interactions, a clear image of the Icelandic upper mantle structure is necessary. We collect continuous seismic records from 164 stations and extract Rayleigh wave dispersion curves via the frequency-Bessel (F-J) transform method. Based on ambient noise tomography, we provide a new shear-wave velocity model of the Icelandic crust and uppermost mantle, extending to a depth of 120 km. The model is validated by the waveform simulation method and reveals extensive crustal low-velocity zones (LVZs) across both the neovolcanic and nonvolcanic zones of Iceland. These crustal LVZs may be attributed to elevated temperatures, partial melting, and lithological variations. A distinct LVZ beneath a depth of 60 km, mainly on the North American Plate, may correspond to Icelandic plume material. Additionally, hot plume material may be delivered to the crust through low-velocity conduits beneath the spreading mid-ocean ridge. There is a clear contrast between the uppermost mantle low-velocity zones (UMLVZs) in the western region and the uppermost mantle high-velocity zones in the eastern region, which may indicate asymmetric tectonic plates on both sides of the mid-ocean ridge. This asymmetry may be attributed to the multiple eastward jumps of the ridge systems. The eastern high-velocity body, meaning a cooler uppermost mantle than that of the western region, may act as a barrier to obstruct the eastward plume flow. Under plume–ridge interactions, plume material can affect crustal accretion and feed volcanic activity on the surface along the spreading Mid-Atlantic Ridge.

中文翻译:


环境噪声瑞利波断层扫描揭示冰岛的地震结构



由于它是研究羽流-山脊相互作用的理想位置,因此需要冰岛上地幔结构的清晰图像。我们从 164 个站点收集了连续的地震记录,并通过频率贝塞尔 (F-J) 变换方法提取瑞利波扩散曲线。基于环境噪声层析成像,我们提供了冰岛地壳和最上部地幔的新剪切波速度模型,延伸到 120 公里的深度。该模型通过波形模拟方法进行了验证,并揭示了冰岛新火山和非火山带的广泛地壳低速带 (LVZ)。这些地壳 LVZ 可能归因于高温、部分熔化和岩性变化。深度低于 60 公里的独特 LVZ,主要在北美板块上,可能与冰岛的羽流物质相对应。此外,热羽流物质可能通过扩张的洋中脊下方的低速管道输送到地壳。西部地区最上层的地幔低速带 (UMLVZ) 与东部地区最上层的地幔高速带之间存在明显的对比,这可能表明洋中脊两侧的构造板块不对称。这种不对称性可能归因于山脊系统的多次向东跳跃。东部高速体,即比西部地区更凉爽的最上层地幔,可能成为阻碍羽流向东流动的屏障。在羽流-山脊相互作用下,羽流物质可以影响地壳吸积,并滋养沿不断扩大的大西洋中脊表面的火山活动。
更新日期:2024-09-23
down
wechat
bug