当前位置:
X-MOL 学术
›
Soil Tillage Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An evaluation of soil carbon models and their role on finding ways to net-zero carbon in agricultural systems
Soil and Tillage Research ( IF 6.1 ) Pub Date : 2024-11-01 , DOI: 10.1016/j.still.2024.106342
G. Vazquez Amabile, G. Studdert, S.M. Ogle, M. Beltrán, A.D. Said, S. Galbusera, F. Montiel, R. Moreno, M.F. Ricard
Soil and Tillage Research ( IF 6.1 ) Pub Date : 2024-11-01 , DOI: 10.1016/j.still.2024.106342
G. Vazquez Amabile, G. Studdert, S.M. Ogle, M. Beltrán, A.D. Said, S. Galbusera, F. Montiel, R. Moreno, M.F. Ricard
The estimation of changes in soil organic carbon (SOC) is a key issue for national green-house gasses (GHG) inventories, climate change mitigation programs and the estimation of carbon footprint of farm products in life cycle assessments. Any strategy related to net-zero carbon in agricultural systems needs to quantify the SOC balance. In this way, SOC models help decision makers involved in agriculture to understand the dynamics of the SOC and the interaction between all variables related to soil, climate, land use, and management, to design the best solution to reduce emissions or enable carbon sequestration. Likewise, it is important to identify suitable models for the region. This study aims to address three main subjects: a) a discussion on the importance of SOC estimation for GHG inventories and the carbon footprint of crops, using the Intergovernmental Panel on Climate Change (IPCC) Tier 1 method and AMG model; b) an evaluation and brief description of the IPCC “Steady State Method” (SSM), using experimental data from two sites in Argentina, comparing these results to AMG and RothC models (both previously validated at those sites); and c) a brief discussion about the potential use of SOC models for what-if management scenarios, their real limitations and future research needs. The three models were consistent in predicting the impact of tillage and the long-term trends in changes in SOC stocks under different management practices. The SSM model was evaluated for the first time in Argentina and performed even better than the other two models. It was consistent with the observed values, when predicting the effect of tillage system under different crop rotations, including pasture systems. Regarding efficiencies of the models, they showed acceptable Nash-Sutcliffe Efficiency (NSE) values, and the root mean square error (RMSE) was also acceptable between 3 % and 7 %, within a range of 4–5 Mg C.ha−1 . Therefore, the SSM model proved to be a valuable tool to estimate SOC trends for crop and pasture rotations under different management scenarios (i.e., tillage systems and fertilization), to identify best practices that allow for a zero or positive SOC balance, in two different soil and climate conditions of the Pampean Region of Argentina. In our study, the SSM did have a better fit to the data and, furthermore, this Tier 2 method is simpler than the Tier 3 models, and, therefore, is advantageous for conducting regional assessments and GHG inventories.
中文翻译:
土壤碳模型评估及其在寻找农业系统净零碳方法中的作用
土壤有机碳 (SOC) 变化的估算是国家温室气体 (GHG) 清单、气候变化缓解计划以及生命周期评估中农产品碳足迹估算的关键问题。任何与农业系统净零碳相关的战略都需要量化 SOC 平衡。通过这种方式,SOC 模型可以帮助参与农业的决策者了解 SOC 的动态以及与土壤、气候、土地利用和管理相关的所有变量之间的相互作用,从而设计出减少排放或实现碳封存的最佳解决方案。同样,为该地区确定合适的模型也很重要。本研究旨在解决三个主要主题:a) 使用政府间气候变化专门委员会 (IPCC) 第 1 级方法和 AMG 模型讨论 SOC 估计对温室气体清单和作物碳足迹的重要性;b) 使用来自阿根廷两个站点的实验数据,对 IPCC“稳态方法”(SSM) 进行评估和简要描述,并将这些结果与 AMG 和 RothC 模型(均先前在这些站点验证过)进行比较;c) 简要讨论了 SOC 模型在假设管理场景中的潜在用途、它们的真正局限性和未来的研究需求。这三种模型在预测耕作的影响和不同管理实践下土壤有机碳储量变化的长期趋势方面是一致的。SSM 模型首次在阿根廷进行了评估,其性能甚至优于其他两个模型。在预测不同作物轮作(包括牧场系统)下耕作系统的影响时,它与观测值一致。 关于模型的效率,它们显示出可接受的 Nash-Sutcliffe 效率 (NSE) 值,并且在 4-5 Mg C.ha-1 的范围内,均方根误差 (RMSE) 在 3% 到 7% 之间也是可以接受的。因此,SSM 模型被证明是估计不同管理情景(即耕作系统和施肥)下作物和牧场轮作的 SOC 趋势的宝贵工具,以确定在阿根廷潘皮安地区两种不同的土壤和气候条件下实现零或正 SOC 平衡的最佳实践。在我们的研究中,SSM 确实与数据拟合得更好,此外,这种 2 级方法比 3 级模型更简单,因此有利于进行区域评估和温室气体清单。
更新日期:2024-11-01
中文翻译:
土壤碳模型评估及其在寻找农业系统净零碳方法中的作用
土壤有机碳 (SOC) 变化的估算是国家温室气体 (GHG) 清单、气候变化缓解计划以及生命周期评估中农产品碳足迹估算的关键问题。任何与农业系统净零碳相关的战略都需要量化 SOC 平衡。通过这种方式,SOC 模型可以帮助参与农业的决策者了解 SOC 的动态以及与土壤、气候、土地利用和管理相关的所有变量之间的相互作用,从而设计出减少排放或实现碳封存的最佳解决方案。同样,为该地区确定合适的模型也很重要。本研究旨在解决三个主要主题:a) 使用政府间气候变化专门委员会 (IPCC) 第 1 级方法和 AMG 模型讨论 SOC 估计对温室气体清单和作物碳足迹的重要性;b) 使用来自阿根廷两个站点的实验数据,对 IPCC“稳态方法”(SSM) 进行评估和简要描述,并将这些结果与 AMG 和 RothC 模型(均先前在这些站点验证过)进行比较;c) 简要讨论了 SOC 模型在假设管理场景中的潜在用途、它们的真正局限性和未来的研究需求。这三种模型在预测耕作的影响和不同管理实践下土壤有机碳储量变化的长期趋势方面是一致的。SSM 模型首次在阿根廷进行了评估,其性能甚至优于其他两个模型。在预测不同作物轮作(包括牧场系统)下耕作系统的影响时,它与观测值一致。 关于模型的效率,它们显示出可接受的 Nash-Sutcliffe 效率 (NSE) 值,并且在 4-5 Mg C.ha-1 的范围内,均方根误差 (RMSE) 在 3% 到 7% 之间也是可以接受的。因此,SSM 模型被证明是估计不同管理情景(即耕作系统和施肥)下作物和牧场轮作的 SOC 趋势的宝贵工具,以确定在阿根廷潘皮安地区两种不同的土壤和气候条件下实现零或正 SOC 平衡的最佳实践。在我们的研究中,SSM 确实与数据拟合得更好,此外,这种 2 级方法比 3 级模型更简单,因此有利于进行区域评估和温室气体清单。