Critical Care ( IF 8.8 ) Pub Date : 2024-11-15 , DOI: 10.1186/s13054-024-05163-z José Manuel Añón, Fernando Suarez-Sipmann, María Paz Escuela, Aris Perez-Lucendo, Andoni García-Muñoz
We read the review by Müller-Wirtz [1] et al., recently published in this journal with interest. It addresses the advantages of using volatile anaesthetics for lung and diaphragm-protective sedation. As the authors point out in their methodology, it is a narrative review based on expert opinion to which we wanted to contribute with some comments we believe are important.
The authors affirm that volatile anaesthetics reduce tidal volume and simultaneously increase respiratory rate in a dose-dependent fashion, thus potentially contributing to reduce lung stress and strain in spontaneously breathing patients. In addition, volatile anaesthetics better preserve respiratory drive than do common intravenous alternatives. The combination of these two effects lead them to conclude that volatile anaesthetics may contribute to a lung-diaphragmatic protective ventilation. Attributing a lung-diaphragmatic protective effect to the use of one specific type of sedation based mainly on pre-clinical studies [2,3,4,5,6] and small studies on healthy volunteers [7,8,9,10,11] with little data on critically ill patients, is a hypothesis that warrants to be tested and confirmed in well-designed clinical trials. We agree on the importance of adequate sedation and the potential protective benefits of volatile anaesthetics, but the role of factors such as the underlying lung condition, the effective control of respiratory drive and the dosage needed for it, the synergistic effects with opioids and other hypnotics, among others are yet to be established. The best balance between a preserved or excessive respiratory drive is difficult and depends on the individual patient and may vary along the evolution. For instance, in the presence of a high respiratory drive, such as seen in patients with acute respiratory distress syndrome (ARDS), sedation should rather contribute to modulate the intensity of the spontaneous inspiratory effort than to enhance it. Nevertheless, volatile anaesthetics are a welcome new addition to the clinical arsenal to improve sedation strategies in the always complicated transition from controlled to spontaneous mechanical ventilation.
All reflectors increase dead space ventilation due to their internal volume and partial carbon dioxide reflection. The two devices clinically available for inhaled sedation have made an effort to reduce their instrumental dead space volume, on average from 100 ml in the first-generation devices to around 50 ml of the currently used ones. However, it is important to pay special attention to avoid unnecessary increases in dead space particularly in patients ventilated with lower tidal volumes, where instrumental dead-space can add up to a 15–30% to the dead-space fraction. In this respect, the graphical abstract used to illustrate the clinical setup is rather unfortunate showing a large straight connector adding an additional instrumental dead space volume of at least 50–70 ml something that should be strictly avoided when using volatile anaesthetics. Patients need to compensate for this effect by increasing minute ventilation (either tidal volume, respiratory rate or both), all potentially contributing to lung injury, which can outweigh the intended protective effect in terms of a reduction in lung’s mechanical stress [12].
In summary, the first step to consider regarding the use of isoflurane in critically ill patients is to weigh its benefits as a hypnotic, an attractive alternative, at least in the short term. Although its long-term effects and outcomes compared to other intravenous hypnotics in critically ill patients remain unclear, isoflurane appears to be increasingly used in ICUs. Some scientific societies consider isoflurane a first-line sedative for ventilated patients requiring moderate or deep sedation due to its short duration of action and safety profile. But their recommendations emphasize the importance of adequately training ICU healthcare personnel to optimize its administration and minimize associated risks [13]. Other potential benefits are yet to be demonstrated. Currently, comparative studies with propofol are being conducted in patients requiring sedation for more than 48 h, focusing on outcomes such as delirium or length of mechanical ventilation. The possibility that isoflurane may reduce stress and strain in patients with spontaneous breathing or have a protective effect on the lung and diaphragm is a very attractive hypothesis that requires confirmation in clinical trials in the critical care setting.
The authors declare no competing interests.
No datasets were generated or analysed during the current study.
Müller-Wirtz LM, O´Gara B, Gama de Abreu M, Schultz MJ, Beitler JR, Jerath A, et al. Volatile anaesthetics for lung- and diaphragm-protective sedation. Crit Care. 2024;28:269.
Article PubMed PubMed Central Google Scholar
Bourgeois T, Ringot M, Ramanantsoa N, Matrot B, Dauger S, Delclaux C, et al. Breathing under anaesthesia. Anesthesiology. 2019;130:995–1006.
Article PubMed Google Scholar
Yang Y, Ou M, Liu J, Zhao W, Zhuoma L, Liang Y, et al. Volatile anaesthetics activate a leak sodium conductance in retrotrapezoid nucleus neurons to maintain breathing during anaesthesia in mice. Anesthesiology. 2020;133:824–38.
Article CAS PubMed Google Scholar
Lazarenko RM, Fortuna MG, Shi Y, Mulkey DK, Takakura AC, Moreira TS, et al. Anaesthetic activation of central respiratory chemoreceptor neurons involves inhibition of a THIK-1-like background K+ current. J Neurosci. 2010;30:9324–34.
Article CAS PubMed PubMed Central Google Scholar
Eikermann M, Malhotra A, Fassbender P, Zaremba S, Jordan AS, Gautam S, et al. Differential effects of isoflurane and propofol on upper airway dilator muscle activity and breathing. Anesthesiology. 2008;108:897–906.
Article CAS PubMed Google Scholar
Hao X, Ou M, Li Y, Zhou C. Volatile anaesthetics maintain tidal volume and minute ventilation to a greater degree than propofol under spontaneous respiration. BMC Anesthesiol. 2021;21:238.
Article CAS PubMed PubMed Central Google Scholar
Simons JCP, Pierce E, Diaz-Gil D, Malviya SA, Meyer MJ, Timm FP, et al. Effects of depth of propofol and sevoflurane anaesthesia on upper airway collapsibility, respiratory genioglossus activation, and breathing in healthy volunteers. Anesthesiology. 2016;125:525–34.
Article CAS PubMed Google Scholar
van den Elsen MJ, Dahan A, Berkenbosch A, DeGoede J, van Kleef JW, Olievier ICW. Does subanaesthetic isoflurane affect the ventilatory response to acute isocapnic hypoxia in healthy volunteers? Anesthesiology. 1994;81:860–7.
Article PubMed Google Scholar
van den Elsen M, Sarton E, Teppema L, Berkenbosch A, Dahan A. Influence of 0.1 minimum alveolar concentration of sevoflurane, desflurane and isoflurane on dynamic ventilatory response to hypercapnia in humans. Br J Anaesth. 1998;80:174–82.
Article PubMed Google Scholar
Pandit JJ, Manning-Fox J, Dorrington KL, Robbins PA. Effects of subanaesthetic sevoflurane on ventilation. 2: response to acute and sustained hypoxia in humans. Br J Anaesth. 1999;83:210–6.
Article CAS PubMed Google Scholar
Pandit JJ, Manning-Fox J, Dorrington KL, Robbins PA. Effects of subanaesthetic sevoflurane on ventilation. 1: response to acute and sustained hypercapnia in humans. Br J Anaesth. 1999;83:204–9.
Article CAS PubMed Google Scholar
Lellouche F, Delorme M, Brochard L. Impact of respiratory rate and dead space in the current era of lung protective mechanical ventilation. Chest. 2020;158:45–7.
Article PubMed Google Scholar
Contreras S, Giménez-Esparza C, Caballero J; Sedation, analgesia and Delirium Working Group (GTSAD) of the Spanish Society of Intensive and Critical Care Medicine and Coronary Units (SEMICYUC). Practical approach to inhaled sedation in the critically ill patient. Med Intensiva. 2024;48:467–76
Download references
Authors and Affiliations
Department of Intensive Care Medicine, Hospital Universitario La Paz, Paseo de La Castellana 261, 28046, Madrid, Spain
José Manuel Añón & Andoni García-Muñoz
Instituto de Investigación del Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
José Manuel Añón & Andoni García-Muñoz
Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
José Manuel Añón & Fernando Suarez-Sipmann
Department of Intensive Care Medicine, Hospital Universitario La Princesa, Madrid, Spain
Fernando Suarez-Sipmann & Aris Perez-Lucendo
Department of Intensive Care Medicine , Hospital Universitario Infanta Leonor, Madrid, Spain
María Paz Escuela
- José Manuel AñónView author publications
You can also search for this author in PubMed Google Scholar
- Fernando Suarez-SipmannView author publications
You can also search for this author in PubMed Google Scholar
- María Paz EscuelaView author publications
You can also search for this author in PubMed Google Scholar
- Aris Perez-LucendoView author publications
You can also search for this author in PubMed Google Scholar
- Andoni García-MuñozView author publications
You can also search for this author in PubMed Google Scholar
Contributions
JMA, FSS, MPE, APL and AGM contributed to the initial concept and design. JMA and FSS participated in the final draft of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Correspondence to José Manuel Añón.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
Reprints and permissions
Cite this article
Añón, J.M., Suarez-Sipmann, F., Escuela, M.P. et al. Volatile anaesthetics for ICU sedation: beyond hypnosis?. Crit Care 28, 369 (2024). https://doi.org/10.1186/s13054-024-05163-z
Download citation
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13054-024-05163-z
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
中文翻译:
用于 ICU 镇静的挥发性麻醉剂:催眠之外?
我们饶有兴趣地阅读了最近发表在本杂志上的 Müller-Wirtz [1] 等人的评论。它解决了使用挥发性麻醉剂进行肺和隔膜保护性镇静的优势。正如作者在他们的方法中指出的那样,这是一篇基于专家意见的叙述性综述,我们希望为它做出贡献,并提供一些我们认为重要的评论。
作者确认,挥发性麻醉剂可减少潮气量,同时以剂量依赖性方式增加呼吸频率,从而可能有助于减轻自主呼吸患者的肺应激和劳损。此外,挥发性麻醉剂比普通的静脉注射麻醉剂更能保持呼吸驱动。这两种作用的结合使他们得出结论,挥发性麻醉剂可能有助于肺-膈肌保护性通气。将肺-横膈膜保护作用归因于使用一种特定类型的镇静剂,主要基于临床前研究 [2,3,4,5,6] 和对健康志愿者的小型研究 [7,8,9,10,11],而危重患者的数据很少,这是一个值得在精心设计的临床试验中进行测试和确认的假设。我们同意充分镇静的重要性和挥发性麻醉剂的潜在保护作用,但诸如潜在的肺部状况、呼吸驱动的有效控制及其所需的剂量、与阿片类药物和其他催眠药的协同作用等因素的作用尚未确定。在保留或过度呼吸驱动之间取得最佳平衡是困难的,并且取决于个体患者,并且可能会随着进化而变化。例如,在存在高呼吸驱动力的情况下,例如在急性呼吸窘迫综合征 (ARDS) 患者中看到的,镇静应该有助于调节自主吸气努力的强度,而不是增强它。尽管如此,挥发性麻醉剂是临床武器库中一个受欢迎的新成员,用于改进从受控机械通气到自主机械通气的复杂过渡中的镇静策略。
所有反射器由于其内部体积和部分二氧化碳反射而增加了死腔通风。临床上可用于吸入镇静的两种设备已努力减少其仪器死腔体积,平均从第一代设备的 100 毫升减少到目前使用的 50 毫升左右。然而,重要的是要特别注意避免死腔不必要地增加,尤其是在通气量较低的患者中,其中器械死腔加起来可增加 15-30% 的死腔分数。在这方面,用于说明临床设置的图形摘要相当遗憾,显示了一个大的直连接器增加了至少 50-70 ml 的额外器械死腔体积,在使用挥发性麻醉剂时应严格避免这种情况。患者需要通过增加每分钟通气量(潮气量、呼吸频率或两者兼而有之)来补偿这种影响,所有这些都可能导致肺损伤,而肺损伤在减少肺机械应力方面可能超过预期的保护作用[12]。
总之,关于在危重患者中使用异氟醚,首先要考虑的是权衡其作为催眠药的好处,至少在短期内是一种有吸引力的替代品。尽管与其他静脉安眠药相比,其对危重患者的长期影响和结果仍不清楚,但异氟醚似乎越来越多地用于 ICU。一些科学协会认为异氟醚是需要中度或深度镇静的通气患者的一线镇静剂,因为它的作用持续时间短且安全性高。但他们的建议强调了对 ICU 医护人员进行充分培训的重要性,以优化其管理并最大限度地降低相关风险 [13]。其他潜在的好处还有待证明。目前,正在需要镇静超过 48 小时的患者中进行异丙酚的比较研究,重点是谵妄或机械通气时间等结果。异氟醚可能减轻自主呼吸患者的压力和劳损或对肺和横膈膜有保护作用的可能性是一个非常有吸引力的假设,需要在重症监护环境中的临床试验中得到证实。
作者声明没有利益冲突。
在当前研究期间没有生成或分析数据集。
Müller-Wirtz LM、O'Gara B、Gama de Abreu M、Schultz MJ、Beitler JR、Jerath A 等人。用于肺和隔膜保护性镇静的挥发性麻醉剂。暴击护理。2024;28:269.
文章: PubMed PubMed Central Google Scholar
Bourgeois T、Ringot M、Ramanantsoa N、Matrot B、Dauger S、Delclaux C 等人。麻醉下呼吸。麻醉。2019;130:995–1006.
文章 PubMed 谷歌学术
Yang Y, Ou M, Liu J, Zhao W, Zhuoma L, Liang Y, et al.挥发性麻醉剂激活梯形后核神经元中的漏钠电导,以在小鼠麻醉期间维持呼吸。麻醉。2020;133:824–38.
论文 CAS PubMed Google Scholar
Lazarenko RM、Fortuna MG、Shi Y、Mulkey DK、Takakura AC、Moreira TS 等人。中枢呼吸化学感受器神经元的麻醉激活涉及抑制 THIK-1 样背景 K+ 电流。神经科学杂志。2010;30:9324–34.
论文: CAS PubMed, PubMed, Central Google Scholar
Eikermann M、Malhotra A、Fassbender P、Zaremba S、Jordan AS、Gautam S 等人。异氟醚和异丙酚对上气道扩张肌活动和呼吸的不同影响。麻醉。2008;108:897–906.
论文 CAS PubMed Google Scholar
Hao X, Ou M, Li Y, 周 C. 挥发性麻醉剂在自主呼吸下比异丙酚更能维持潮气量和分钟通气量。BMC 麻醉剂。2021;21:238.
论文: CAS PubMed, PubMed, Central Google Scholar
Simons JCP、Pierce E、Diaz-Gil D、Malviya SA、Meyer MJ、Timm FP 等人。异丙酚深度和七氟烷麻醉对健康志愿者上气道塌陷性、呼吸道颏舌激活和呼吸的影响。麻醉。2016;125:525–34.
论文 CAS PubMed Google Scholar
van den Elsen MJ, Dahan A, Berkenbosch A, DeGoede J, van Kleef JW, Olievier ICW.亚麻醉异氟醚是否会影响健康志愿者对急性等碳酸血症性缺氧的通气反应?麻醉。1994;81:860–7.
文章 PubMed 谷歌学术
van den Elsen M, Sarton E, Teppema L, Berkenbosch A, Dahan A. 七氟烷、地氟烷和异氟醚的最低肺泡浓度对人类高碳酸血症动态通气反应的影响。Br J 麻醉。1998;80:174–82.
文章 PubMed 谷歌学术
Pandit JJ、Manning-Fox J、Dorrington KL、Robbins PA。亚麻醉性七氟烷对通气的影响。2:对人类急性和持续缺氧的反应。Br J 麻醉。1999;83:210–6.
论文 CAS PubMed Google Scholar
Pandit JJ、Manning-Fox J、Dorrington KL、Robbins PA。亚麻醉性七氟烷对通气的影响。1:对人类急性和持续性高碳酸血症的反应。Br J 麻醉。1999;83:204–9.
论文 CAS PubMed Google Scholar
Lellouche F, Delorme M, Brochard L. 当前肺保护性机械通气时代呼吸频率和死腔的影响。胸。2020;158:45–7.
文章 PubMed 谷歌学术
孔特雷拉斯 S, 吉梅内斯-埃斯帕扎 C, 卡巴列罗 J;西班牙重症监护医学和冠状动脉病房协会 (SEMICYUC) 的镇静、镇痛和谵妄工作组 (GTSAD)。危重患者吸入镇静的实用方法。Med Intensiva.2024;48:467–76
下载参考资料
作者和单位
西班牙马德里拉巴斯大学医院重症监护医学科 Paseo de La Castellana 261, 28046
何塞·曼努埃尔·阿尼翁和安多尼·加西亚-穆尼奥斯
西班牙马德里 IdiPAZ 拉巴斯大学医院研究所
何塞·曼努埃尔·阿尼翁和安多尼·加西亚-穆尼奥斯
西班牙马德里卡洛斯三世健康研究所呼吸疾病生物医学研究中心网络 (CIBERES)
何塞·曼努埃尔·阿尼翁和费尔南多·苏亚雷斯-西普曼
西班牙马德里 Universitario La Princesa 医院重症监护医学科
费尔南多·苏亚雷斯-西普曼 & 阿里斯·佩雷斯-卢森多
西班牙马德里 Universitario Infanta Leonor 医院重症监护医学科玛丽亚·帕斯·埃斯库埃拉
何塞·曼努埃尔·阿尼翁查看作者出版物
您也可以在 PubMed Google Scholar 中搜索此作者
费尔南多·苏亚雷斯-西普曼查看作者出版物
您也可以在 PubMed Google Scholar 中搜索此作者
玛丽亚·帕斯·埃斯库埃拉查看作者出版物
您也可以在 PubMed Google Scholar 中搜索此作者
阿里斯·佩雷斯-卢森多查看作者出版物
您也可以在 PubMed Google Scholar 中搜索此作者
安多尼·加西亚-穆尼奥斯查看作者出版物
您也可以在 PubMed Google Scholar 中搜索此作者
贡献
JMA、FSS、MPE、APL 和 AGM 为最初的概念和设计做出了贡献。JMA 和 FSS 参与了手稿的最终起草。所有作者都阅读并批准了最终稿件。
通讯作者
与何塞·曼努埃尔·阿尼翁 (José Manuel Añón) 的通信。
出版商注
施普林格·自然 (Springer Nature) 对已发布的地图和机构隶属关系中的管辖权主张保持中立。
开放获取本文根据 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License 获得许可,该许可允许以任何媒体或格式进行任何非商业用途、共享、分发和复制,前提是您给予原作者和来源适当的署名,提供指向 Creative Commons 许可的链接,并说明您是否修改了许可材料。根据本许可,您无权共享源自本文或其部分的改编材料。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的致谢行中另有说明。如果材料未包含在文章的 Creative Commons 许可中,并且您的预期用途未被法律法规允许或超出允许的用途,您将需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by-nc-nd/4.0/。
重印本和权限
引用本文
下载引文
使用本文
您与之共享以下链接的任何人都可以阅读此内容:
抱歉,本文目前没有可共享链接。
由 Springer Nature SharedIt 内容共享计划提供