当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
High‐Entropy Phosphide Catalyst‐Based Hybrid Electrolyzer: A Cost‐Effective and Mild‐Condition Approach for H2 Liberation from Methanol
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-11-16 , DOI: 10.1002/aenm.202404114 Xueting Zhao, Wei Sun, Xi Liu, Zhiwen Lu, Kai Chen, Jiyuan Gao, Junxiang Chen, Hao Zhang, Zhenhai Wen
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-11-16 , DOI: 10.1002/aenm.202404114 Xueting Zhao, Wei Sun, Xi Liu, Zhiwen Lu, Kai Chen, Jiyuan Gao, Junxiang Chen, Hao Zhang, Zhenhai Wen
Methanol as a hydrogen carrier provides a practical solution for H2 storage and transport, but traditional reforming faces challenges with low efficiency, CO2 emissions, and the need for specialized infrastructure. In this study, a reliable approach for fabricating low‐cost electrodes is presented by in situ growing high‐entropy phosphide nanoparticles on nickel foam (FeCoNiCuMnP/NF). This cost‐effective design is specifically engineered for alkaline methanol oxidation reactions (MOR), achieving a current density of 10 mA cm−2 at an applied voltage of only 1.32 V, while also demonstrating exceptional selectivity for formate products. Advanced Monte Carlo (ML‐MC) simulations identify copper as the predominant surface element and highlight phosphorus coordination as a key factor in enhancing catalytic activity. The field is advanced with a pioneering hybrid acid/alkali flow electrolyzer system, integrating FeCoNiCuMnP/NF anode and commercial RuIr/Ti cathode to enable indirect hydrogen liberation from methanol. This system requires an electrolytic voltage as low as 0.58 V to achieve a current density of 10 mA cm−2 and remains stable for hydrogen liberation over 300 h of operation. This achievement not only offers a highly efficient alternative to indirectly liberate H2 stored in methanol but also establishes a new benchmark for sustainable and economically viable H2 production.
中文翻译:
基于高熵磷化物催化剂的混合电解槽:一种从甲醇中释放 H2 的经济高效且温和的方法
甲醇作为氢载体为 H2 储存和运输提供了一种实用的解决方案,但传统的重整面临效率低、二氧化碳排放和需要专业基础设施等挑战。在这项研究中,通过在泡沫镍 (FeCoNiCuMnP/NF) 上原位生长高熵磷化物纳米颗粒提出了一种制造低成本电极的可靠方法。这种经济高效的设计专为碱性甲醇氧化反应 (MOR) 而设计,在仅 1.32 V 的外加电压下可实现 10 mA cm−2 的电流密度,同时还对甲酸盐产品表现出卓越的选择性。高级蒙特卡洛 (ML-MC) 模拟将铜确定为主要的表面元素,并强调磷配位是增强催化活性的关键因素。该领域采用开创性的混合酸/碱流电解槽系统,集成了 FeCoNiCuMnP/NF 阳极和商用 RuIr/Ti 阴极,能够从甲醇中间接释放氢气。该系统需要低至 0.58 V 的电解电压才能实现 10 mA cm−2 的电流密度,并且在运行 300 小时后保持稳定以释放氢气。这一成就不仅为间接释放储存在甲醇中的 H2 提供了一种高效的替代方案,而且为可持续和经济可行的 H2 生产建立了新的基准。
更新日期:2024-11-16
中文翻译:
基于高熵磷化物催化剂的混合电解槽:一种从甲醇中释放 H2 的经济高效且温和的方法
甲醇作为氢载体为 H2 储存和运输提供了一种实用的解决方案,但传统的重整面临效率低、二氧化碳排放和需要专业基础设施等挑战。在这项研究中,通过在泡沫镍 (FeCoNiCuMnP/NF) 上原位生长高熵磷化物纳米颗粒提出了一种制造低成本电极的可靠方法。这种经济高效的设计专为碱性甲醇氧化反应 (MOR) 而设计,在仅 1.32 V 的外加电压下可实现 10 mA cm−2 的电流密度,同时还对甲酸盐产品表现出卓越的选择性。高级蒙特卡洛 (ML-MC) 模拟将铜确定为主要的表面元素,并强调磷配位是增强催化活性的关键因素。该领域采用开创性的混合酸/碱流电解槽系统,集成了 FeCoNiCuMnP/NF 阳极和商用 RuIr/Ti 阴极,能够从甲醇中间接释放氢气。该系统需要低至 0.58 V 的电解电压才能实现 10 mA cm−2 的电流密度,并且在运行 300 小时后保持稳定以释放氢气。这一成就不仅为间接释放储存在甲醇中的 H2 提供了一种高效的替代方案,而且为可持续和经济可行的 H2 生产建立了新的基准。