当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Making Interfacial Solar Evaporation of Seawater Faster than Fresh Water
Advanced Materials ( IF 27.4 ) Pub Date : 2024-11-16 , DOI: 10.1002/adma.202414045 Huimin Yu, Huanyu Jin, Meijia Qiu, Yunzheng Liang, Peng Sun, Chuanqi Cheng, Pan Wu, Yida Wang, Xuan Wu, Dewei Chu, Min Zheng, Tong Qiu, Yi Lu, Bin Zhang, Wenjie Mai, Xiaofei Yang, Gary Owens, Haolan Xu
Advanced Materials ( IF 27.4 ) Pub Date : 2024-11-16 , DOI: 10.1002/adma.202414045 Huimin Yu, Huanyu Jin, Meijia Qiu, Yunzheng Liang, Peng Sun, Chuanqi Cheng, Pan Wu, Yida Wang, Xuan Wu, Dewei Chu, Min Zheng, Tong Qiu, Yi Lu, Bin Zhang, Wenjie Mai, Xiaofei Yang, Gary Owens, Haolan Xu
Interfacial solar evaporation‐based seawater desalination is regarded as one of the most promising strategies to alleviate freshwater scarcity. However, the solar evaporation rate of real seawater is significantly constricted by the ubiquitous salts present in seawater. In addition to the common issue of salt accumulation on the evaporation surface during solar evaporation, strong hydration between salt ions and water molecules leads to a lower evaporation rate for real seawater compared to pure water. Here a facile and general strategy is developed to reverse this occurrence, that is, making real seawater evaporation faster than pure water. By simply introducing specific mineral materials into the floating photothermal evaporator, ion exchange at air–water interfaces directly results in a decrease in seawater evaporation enthalpy, and consequently achieves much higher seawater evaporation rates compared to pure water. This process is spontaneously realized during seawater solar evaporation. Considering the current enormous clean water production from evaporation‐based desalination plants, such an evaporation performance improvement can remarkably increase annual clean water production, benefiting millions of people worldwide.
中文翻译:
使海水的界面太阳能蒸发速度比淡水快
基于界面太阳能蒸发的海水淡化被认为是缓解淡水短缺的最有前途的策略之一。然而,真实海水的太阳蒸发速率受到海水中无处不在的盐分的显著限制。除了太阳蒸发过程中盐分在蒸发表面积累的常见问题外,盐离子和水分子之间的强水合作用导致与纯水相比,真实海水的蒸发速率较低。这里开发了一种简单而通用的策略来扭转这种情况,即使真正的海水蒸发得比纯水更快。通过简单地将特定矿物材料引入浮动光热蒸发器,空气-水界面的离子交换直接导致海水蒸发焓的降低,因此与纯水相比,海水蒸发速率要高得多。这个过程是在海水太阳能蒸发过程中自发实现的。考虑到目前基于蒸发的海水淡化厂生产了大量的清洁水,这种蒸发性能的改进可以显著提高每年的清洁水产量,使全球数百万人受益。
更新日期:2024-11-16
中文翻译:
使海水的界面太阳能蒸发速度比淡水快
基于界面太阳能蒸发的海水淡化被认为是缓解淡水短缺的最有前途的策略之一。然而,真实海水的太阳蒸发速率受到海水中无处不在的盐分的显著限制。除了太阳蒸发过程中盐分在蒸发表面积累的常见问题外,盐离子和水分子之间的强水合作用导致与纯水相比,真实海水的蒸发速率较低。这里开发了一种简单而通用的策略来扭转这种情况,即使真正的海水蒸发得比纯水更快。通过简单地将特定矿物材料引入浮动光热蒸发器,空气-水界面的离子交换直接导致海水蒸发焓的降低,因此与纯水相比,海水蒸发速率要高得多。这个过程是在海水太阳能蒸发过程中自发实现的。考虑到目前基于蒸发的海水淡化厂生产了大量的清洁水,这种蒸发性能的改进可以显著提高每年的清洁水产量,使全球数百万人受益。