Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Polar Molecule Intercalation to Weaken P2─S Bonding in MnPS3 Toward Ultrahigh‐Capacity Sodium Storage
Small ( IF 13.0 ) Pub Date : 2024-11-16 , DOI: 10.1002/smll.202406328 Xueyang Tu, Ke Fan, Baixin Peng, Shaoning Zhang, Yiran Ma, Yuqiang Fang, Haitao Huang, Fuqiang Huang
Small ( IF 13.0 ) Pub Date : 2024-11-16 , DOI: 10.1002/smll.202406328 Xueyang Tu, Ke Fan, Baixin Peng, Shaoning Zhang, Yiran Ma, Yuqiang Fang, Haitao Huang, Fuqiang Huang
Layered transition metal trithiophosphates (TM PS3 , TM = Mn, Fe, Co, etc .) with high theoretical capacity (>1 300 mAh g−1 ) are potential anode materials for sodium‐ion batteries (SIBs). However, the strong bonding between P2 dimers and S atoms in TM PS3 hinders the efficient alloying reaction between P2 dimers and Na+ , resulting in practical capacities much lower than theoretical values. Herein, a polar molecule diisopropylamine (DIPA) is intercalated into MnPS3 for the first time to improve the sodium storage performance effectively. Theoretical calculations show that the electron transfer between DIPA and MnPS3 induces more delocalized S p states and weaker P─S bonds, significantly enhancing the electrochemical activity and sodiation/desodiation reaction kinetics. Moreover, the expanded interlayer spacing from 6.48 to 10.75 Å enables faster Na+ diffusion and more active sites for Na+ adsorption. As expected, the DIPA‐MnPS3 exhibits an ultrahigh capacity of 1,023 mAh g−1 at 0.2 A g−1 and excellent cycling performance (≈100% capacity retention after 4 200 cycles at 10 A g−1 ), far outperforming those metal thiophosphates anodes reported for SIBs. Interestingly, in situ and ex situ characterizations reveal a quasi‐topological intercalation mechanism of DIPA‐MnPS3 . This work provides a novel strategy for the design of high‐performance anode materials for SIBs.
中文翻译:
极性分子嵌入削弱 MnPS3 中的 P2─S 键合,实现超高容量钠储存
具有高理论容量 (>1 300 mAh g−1) 的层状过渡金属三硫代磷酸盐(TMPS3、TM = Mn、Fe、Co 等)是钠离子电池 (SIB) 的潜在负极材料。然而,TMPS3 中 P2 二聚体和 S 原子之间的强键阻碍了 P2 二聚体和 Na+ 之间的有效合金反应,导致实际容量远低于理论值。在此,极性分子二异丙胺 (DIPA) 首次嵌入 MnPS3 中,以有效提高钠储存性能。理论计算表明,DIPA 和 MnPS3 之间的电子转移诱导了更多的离域 S p 状态和更弱的 P─S 键,显着增强了电化学活性和钠化/脱钠反应动力学。此外,从 6.48 Å 扩展到 10.75 Å 的层间距可实现更快的 Na+ 扩散和更多的 Na+ 吸附活性位点。正如预期的那样,DIPA-MnPS3 在 0.2 A g-1 下表现出 1,023 mAh g-1 的超高容量和出色的循环性能(在 10 A g-1 下循环 4 200 次后,容量保持率≈100%),远优于 SIB 报道的金属硫代磷酸盐阳极。有趣的是,原位和非原位表征揭示了 DIPA-MnPS3 的准拓扑插层机制。这项工作为 SIB 的高性能负极材料设计提供了一种新的策略。
更新日期:2024-11-16
中文翻译:
极性分子嵌入削弱 MnPS3 中的 P2─S 键合,实现超高容量钠储存
具有高理论容量 (>1 300 mAh g−1) 的层状过渡金属三硫代磷酸盐(TMPS3、TM = Mn、Fe、Co 等)是钠离子电池 (SIB) 的潜在负极材料。然而,TMPS3 中 P2 二聚体和 S 原子之间的强键阻碍了 P2 二聚体和 Na+ 之间的有效合金反应,导致实际容量远低于理论值。在此,极性分子二异丙胺 (DIPA) 首次嵌入 MnPS3 中,以有效提高钠储存性能。理论计算表明,DIPA 和 MnPS3 之间的电子转移诱导了更多的离域 S p 状态和更弱的 P─S 键,显着增强了电化学活性和钠化/脱钠反应动力学。此外,从 6.48 Å 扩展到 10.75 Å 的层间距可实现更快的 Na+ 扩散和更多的 Na+ 吸附活性位点。正如预期的那样,DIPA-MnPS3 在 0.2 A g-1 下表现出 1,023 mAh g-1 的超高容量和出色的循环性能(在 10 A g-1 下循环 4 200 次后,容量保持率≈100%),远优于 SIB 报道的金属硫代磷酸盐阳极。有趣的是,原位和非原位表征揭示了 DIPA-MnPS3 的准拓扑插层机制。这项工作为 SIB 的高性能负极材料设计提供了一种新的策略。