当前位置:
X-MOL 学术
›
Mater. Today Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fully degradable, highly sensitive pressure sensor based on bipolar electret for biomechanical signal monitoring
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-11-16 , DOI: 10.1016/j.mtphys.2024.101597 Xingchen Ma, Yi Qin, Lian Zhou, Qianqian Hu, Xinhao Xiang, Heinz von Seggern, Sergey Zhukov, Alexander A. Altmann, Mario Kupnik, Wenxin Niu, Xiaoqing Zhang
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-11-16 , DOI: 10.1016/j.mtphys.2024.101597 Xingchen Ma, Yi Qin, Lian Zhou, Qianqian Hu, Xinhao Xiang, Heinz von Seggern, Sergey Zhukov, Alexander A. Altmann, Mario Kupnik, Wenxin Niu, Xiaoqing Zhang
In view of the global ecosystem crisis resulting from the ubiquitous electronic waste (e− and plastic waste), the engineering of advanced electronic devices from sustainable materials is gaining considerable attention. Nevertheless, the development of advanced, maybe even degradable electronics with comparable or even improved functionality remains a great challenge. In this article a fabrication process for a fully degradable, highly sensitive pressure sensor based on electrets is proposed enabling the creation of a universal platform for monitoring various biomechanical signals. The high sensitivity of the proposed biomechanical electret-based sensor utilizes electrostatic induction of highly deformable cellular polylactic acid (PLA) films with a serrated ripple structure and an improved bipolar charge storage capability. This biodegradable pressure sensor possesses competitive mechanical signal detection performance, obtaining a high pressure sensitivity (10 V/kPa), robust working stability (∼30,000 continuous cycles), short electromechanical response/recovery time (∼17 ms), and satisfactory heat resistance up to 60 °C. By tailoring the thickness of the encapsulation layer, the functional lifetime of the biomechanical sensor in physiological environment can be controlled effectively, facilitating adaptability to various implantable application scenarios. Altogether, the present work not only proposes an effective fabrication process for high-performance pressure sensors, but also provides new insight into the design of sustainable electronics with controllable lifetime thereby minimizing their environmental footprint. The developed sensor promises great potential in monitoring multiple biomechanical signals inside and outside the human body (e.g., body movements and physiological activities) as well as an environment-friendly realization of green electronics.
中文翻译:
基于双极驻极体的完全可降解、高灵敏度压力传感器,用于生物力学信号监测
鉴于无处不在的电子垃圾(e-和塑料垃圾)造成的全球生态系统危机,采用可持续材料设计先进电子设备的工程设计正受到相当大的关注。然而,开发具有类似甚至改进功能的先进、甚至可降解的电子产品仍然是一项巨大的挑战。在本文中,提出了一种基于驻极体的完全可降解、高灵敏度压力传感器的制造工艺,从而能够创建一个用于监测各种生物力学信号的通用平台。所提出的基于生物力学驻极体的传感器的高灵敏度利用了高度可变形的细胞聚乳酸 (PLA) 膜的静电感应,该薄膜具有锯齿状波纹结构和改进的双极电荷存储能力。这种可生物降解的压力传感器具有具有竞争力的机械信号检测性能,具有较高的压力灵敏度 (10 V/kPa)、稳定的工作稳定性(∼30,000 次连续循环)、较短的机电响应/恢复时间 (∼17 ms) 以及令人满意的耐热性(最高可达 60 °C)。 通过定制封装层的厚度,可以有效控制生物力学传感器在生理环境中的功能寿命,有利于适应各种植入式应用场景。总而言之,目前的工作不仅为高性能压力传感器提出了一种有效的制造工艺,而且还为设计具有可控使用寿命的可持续电子设备提供了新的见解,从而最大限度地减少了其对环境的影响。开发的传感器有望在监测人体内外的多种生物力学信号方面具有巨大潜力(例如、身体运动和生理活动)以及环保实现的绿色电子产品。
更新日期:2024-11-19
中文翻译:
基于双极驻极体的完全可降解、高灵敏度压力传感器,用于生物力学信号监测
鉴于无处不在的电子垃圾(e-和塑料垃圾)造成的全球生态系统危机,采用可持续材料设计先进电子设备的工程设计正受到相当大的关注。然而,开发具有类似甚至改进功能的先进、甚至可降解的电子产品仍然是一项巨大的挑战。在本文中,提出了一种基于驻极体的完全可降解、高灵敏度压力传感器的制造工艺,从而能够创建一个用于监测各种生物力学信号的通用平台。所提出的基于生物力学驻极体的传感器的高灵敏度利用了高度可变形的细胞聚乳酸 (PLA) 膜的静电感应,该薄膜具有锯齿状波纹结构和改进的双极电荷存储能力。这种可生物降解的压力传感器具有具有竞争力的机械信号检测性能,具有较高的压力灵敏度 (10 V/kPa)、稳定的工作稳定性(∼30,000 次连续循环)、较短的机电响应/恢复时间 (∼17 ms) 以及令人满意的耐热性(最高可达 60 °C)。 通过定制封装层的厚度,可以有效控制生物力学传感器在生理环境中的功能寿命,有利于适应各种植入式应用场景。总而言之,目前的工作不仅为高性能压力传感器提出了一种有效的制造工艺,而且还为设计具有可控使用寿命的可持续电子设备提供了新的见解,从而最大限度地减少了其对环境的影响。开发的传感器有望在监测人体内外的多种生物力学信号方面具有巨大潜力(例如、身体运动和生理活动)以及环保实现的绿色电子产品。