当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deciphering the influence of multi-component blends and their electronic band structure on the performance of All-Solid-State Batteries
Electrochimica Acta ( IF 5.5 ) Pub Date : 2024-11-16 , DOI: 10.1016/j.electacta.2024.145340
Fiyanshu Kaka, Kalyan Sundar Krishna Chivukula

The emergence of all-solid-state batteries (ASSBs) introduces a paradigm shift in energy storage technology, offering enhanced safety compared to conventional liquid-based metal-ion batteries. Significant effort is directed toward optimizing the solid-electrolyte blend composition to enhance the battery’s electrochemical performance. Despite some promising results, a lack of guidelines persists, particularly for optimizing multicomponent solid electrolytes given their large parameter window. This study aims to address this challenge by implementing a unified diffuse-interface approach to model and simulate the solid electrolyte morphologies and their corresponding electrochemical performance when incorporated in a battery. The electrolyte microstructures are simulated using the Cahn-Hilliard formulation while a diffuse-interface framework formulated in terms of electrochemical potential is utilized for exploring Li-ion transport across the battery. It is found that, while the variegated microstructures arising from various solid electrolyte blend compositions influence the power density of the battery, the electronic band structure of the blend phases is an important consideration. The proposed model is versatile and can be adapted for various battery technologies beyond ASSBs. This expands its potential impact and could lead to innovations in energy storage technology.

中文翻译:


破译多组分混合物及其电子能带结构对全固态电池性能的影响



全固态电池 (ASSB) 的出现引入了储能技术的范式转变,与传统的液基金属离子电池相比,它提供了更高的安全性。在优化固体电解质混合物成分以增强电池的电化学性能方面投入了大量精力。尽管取得了一些有希望的结果,但仍然存在缺乏指南,特别是鉴于多组分固体电解质的参数窗口较大,因此无法优化这些指南。本研究旨在通过实施统一的漫反射界面方法来模拟和模拟固体电解质形态及其在电池中加入时的相应电化学性能,从而应对这一挑战。电解质微观结构使用 Cahn-Hilliard 公式进行模拟,而根据电化学电位配制的漫反射界面框架用于探索锂离子在电池中的传输。研究发现,虽然各种固体电解质混合物成分产生的杂色微观结构会影响电池的功率密度,但混合相的电子能带结构是一个重要的考虑因素。所提出的模型是通用的,可以适应 ASSB 以外的各种电池技术。这扩大了其潜在影响,并可能导致储能技术的创新。
更新日期:2024-11-16
down
wechat
bug