Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ionic Liquid Additive Mitigating Lithium Loss and Aluminum Corrosion for High-Voltage Anode-Free Lithium Metal Batteries
ACS Nano ( IF 15.8 ) Pub Date : 2024-11-15 , DOI: 10.1021/acsnano.4c13203 Minghan Zhou, Weijian Liu, Qili Su, Junfeng Zeng, Xueao Jiang, Xuansheng Wu, Zhengjian Chen, Xiwen Wang, Zhe Li, Haijing Liu, Shiguo Zhang
ACS Nano ( IF 15.8 ) Pub Date : 2024-11-15 , DOI: 10.1021/acsnano.4c13203 Minghan Zhou, Weijian Liu, Qili Su, Junfeng Zeng, Xueao Jiang, Xuansheng Wu, Zhengjian Chen, Xiwen Wang, Zhe Li, Haijing Liu, Shiguo Zhang
Concentrated electrolytes based on lithium bis(fluorosulfonyl)imide (LiFSI) have been proposed as an effective Li-compatible electrolyte for anode-free lithium metal batteries (AFLMBs). However, these electrolytes suffer from severe aluminum corrosion at an elevated potential. To address this issue, we propose a binary ionic liquid (IL) electrolyte additive comprising the 1-methyl-1-butyl pyrrolidinium cation (Pyr14+), difluoro(oxalate)borate anion (DFOB–), and difluorophosphate (PO2F2–) anion to mitigate the Li inventory loss and Al corrosion in 4 M LiFSI/DME electrolyte simultaneously. On the anode side, the IL additive facilitates the formation of a robust Li3N- and LiF-rich solid electrolyte interphase, promoting highly reversible Li plating/stripping and uniform Li deposition. Additionally, the ILs alter the Li+ solvation structure, leading to enhanced tLi+ and rapid Li+ desolvation kinetics. Concurrently, on the cathode side, the ILs aid in the generation of dense LiF- and AlF-rich passivation films against Al corrosion. By using the IL-added electrolyte, the Cu||LiMn0.7Fe0.3PO4 cell operates stably at 4.5 V, and the Cu||NCM613 cell with a high loading of 4.0 mA h cm–2 sustains 142 cycles until 80% capacity retention. This research contributes to a deeper understanding of the IL additive mechanism at the electrode–electrolyte interfaces and offers a straightforward approach to designing practical high-voltage AFLMB electrolytes.
中文翻译:
离子液体添加剂减轻高压无阳极锂金属电池的锂损失和铝腐蚀
基于双(氟磺酰)酰亚胺锂 (LiFSI) 的浓电解质已被提议作为无阳极锂金属电池 (AFLMB) 的有效锂相容电解质。然而,这些电解质在高电位下会遭受严重的铝腐蚀。为了解决这个问题,我们提出了一种二元离子液体 (IL) 电解质添加剂,包括 1-甲基-1-丁基吡咯烷基阳离子 (Pyr14+)、二氟(草酸盐)硼酸盐阴离子 (DFOB–) 和二氟磷酸盐 (PO2F2–) 阴离子,以同时减轻 4 M LiFSI/DME 电解质中的 Li 库存损失和 Al 腐蚀。在负极侧,IL 添加剂有助于形成坚固的富含 Li3N 和 LiF 的固体电解质界面,促进高度可逆的 Li 电镀/剥离和均匀的 Li 沉积。此外,IL 会改变 Li+ 溶剂化结构,导致增强的 tLi+ 和快速的 Li+ 脱溶剂化动力学。同时,在阴极侧,IL 有助于产生致密的富含 LiF 和 AlF 的钝化膜,以防止 Al 腐蚀。通过使用添加 IL 的电解质,Cu||LiMn0.7Fe0.3PO4 电池在 4.5 V 下稳定运行,Cu||NCM613 电池具有 4.0 mA h cm–2 的高负载,可维持 142 次循环,直到 80% 的容量保持。这项研究有助于更深入地了解电极-电解质界面处的 IL 加成机制,并为设计实用的高压 AFLMB 电解质提供了一种直接的方法。
更新日期:2024-11-16
中文翻译:
离子液体添加剂减轻高压无阳极锂金属电池的锂损失和铝腐蚀
基于双(氟磺酰)酰亚胺锂 (LiFSI) 的浓电解质已被提议作为无阳极锂金属电池 (AFLMB) 的有效锂相容电解质。然而,这些电解质在高电位下会遭受严重的铝腐蚀。为了解决这个问题,我们提出了一种二元离子液体 (IL) 电解质添加剂,包括 1-甲基-1-丁基吡咯烷基阳离子 (Pyr14+)、二氟(草酸盐)硼酸盐阴离子 (DFOB–) 和二氟磷酸盐 (PO2F2–) 阴离子,以同时减轻 4 M LiFSI/DME 电解质中的 Li 库存损失和 Al 腐蚀。在负极侧,IL 添加剂有助于形成坚固的富含 Li3N 和 LiF 的固体电解质界面,促进高度可逆的 Li 电镀/剥离和均匀的 Li 沉积。此外,IL 会改变 Li+ 溶剂化结构,导致增强的 tLi+ 和快速的 Li+ 脱溶剂化动力学。同时,在阴极侧,IL 有助于产生致密的富含 LiF 和 AlF 的钝化膜,以防止 Al 腐蚀。通过使用添加 IL 的电解质,Cu||LiMn0.7Fe0.3PO4 电池在 4.5 V 下稳定运行,Cu||NCM613 电池具有 4.0 mA h cm–2 的高负载,可维持 142 次循环,直到 80% 的容量保持。这项研究有助于更深入地了解电极-电解质界面处的 IL 加成机制,并为设计实用的高压 AFLMB 电解质提供了一种直接的方法。