当前位置:
X-MOL 学术
›
J. Hazard. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Selective Generation of Hydroxyl and Sulfate Radicals under Electric Field Regulation for Micropollutants Degradation: Mechanism and Structure-Activity Relationship
Journal of Hazardous Materials ( IF 12.2 ) Pub Date : 2024-11-16 , DOI: 10.1016/j.jhazmat.2024.136513 Xiang Chen, Tao Guo, Tiezhu Yan, Yunrong Dai, Lifeng Yin
Journal of Hazardous Materials ( IF 12.2 ) Pub Date : 2024-11-16 , DOI: 10.1016/j.jhazmat.2024.136513 Xiang Chen, Tao Guo, Tiezhu Yan, Yunrong Dai, Lifeng Yin
Peroxymonosulfate (PMS) activation generates potent reactive oxygen species (ROS) such as sulfate radical (SO4·–) and hydroxyl radical (·OH), which play a key role in organic pollutant degradation. However, controlling the generation of these free radicals remains challenging. In this study, various metal (Co, Ni, and Cu)-doped nitrogen carbon compounds (NCs) were synthesized, and their performance in PMS activation under electric field regulation was explored to modulate ROS production for selective pollutant degradation. Bisphenol A (BPA), a readily degradable compound, and ibuprofen (IBU), a recalcitrant pollutant, were chosen as model pollutants to assess degradation efficiency. All catalysts achieved over 95% BPA removal without the electric field, but the application of an electric field significantly accelerated BPA degradation, achieving complete removal within 3 min. In contrast, IBU degradation showed significant variation depending on the catalyst used and the electric field intensity, with Cu-NC demonstrating the highest performance, enhancing the degradation rate by 3.78-fold. Mechanistic studies revealed that the electric field altered the electron density on the catalyst surface, shifting ROS production from SO4·– to ·OH in Co-NC systems. The findings could provide valuable insights into PMS activation under electric field regulation, offering a novel strategy for enhancing micropollutant removal through controlled ROS generation.
中文翻译:
电场调节下羟基和硫酸根自由基的选择性生成对微污染物降解的影响:机理和构效关系
过一硫酸盐 (PMS) 活化产生强效活性氧 (ROS),例如硫酸根自由基 (SO4·–) 和羟基自由基 (·OH),它们在有机污染物降解中起着关键作用。然而,控制这些自由基的产生仍然具有挑战性。在本研究中,合成了各种金属 (Co、Ni 和 Cu) 掺杂的氮碳化合物 (NCs),并探索了它们在电场调节下 PMS 活化的性能,以调节 ROS 的产生以实现选择性污染物降解。选择易降解化合物双酚 A (BPA) 和顽固污染物布洛芬 (IBU) 作为模型污染物来评估降解效率。所有催化剂在没有电场的情况下均实现了超过 95% 的 BPA 去除,但电场的应用显著加速了 BPA 降解,在 3 分钟内完全去除。相比之下,IBU 降解表现出显着变化,具体取决于所使用的催化剂和电场强度,其中 Cu-NC 表现出最高性能,将降解速率提高了 3.78 倍。机理研究表明,电场改变了催化剂表面的电子密度,使 ROS 的产生从 SO4·– 转变为 ·Co-NC 系统中的 OH。这些发现可以为电场调节下的 PMS 激活提供有价值的见解,为通过受控 ROS 生成来增强微污染物去除提供一种新策略。
更新日期:2024-11-16
中文翻译:
电场调节下羟基和硫酸根自由基的选择性生成对微污染物降解的影响:机理和构效关系
过一硫酸盐 (PMS) 活化产生强效活性氧 (ROS),例如硫酸根自由基 (SO4·–) 和羟基自由基 (·OH),它们在有机污染物降解中起着关键作用。然而,控制这些自由基的产生仍然具有挑战性。在本研究中,合成了各种金属 (Co、Ni 和 Cu) 掺杂的氮碳化合物 (NCs),并探索了它们在电场调节下 PMS 活化的性能,以调节 ROS 的产生以实现选择性污染物降解。选择易降解化合物双酚 A (BPA) 和顽固污染物布洛芬 (IBU) 作为模型污染物来评估降解效率。所有催化剂在没有电场的情况下均实现了超过 95% 的 BPA 去除,但电场的应用显著加速了 BPA 降解,在 3 分钟内完全去除。相比之下,IBU 降解表现出显着变化,具体取决于所使用的催化剂和电场强度,其中 Cu-NC 表现出最高性能,将降解速率提高了 3.78 倍。机理研究表明,电场改变了催化剂表面的电子密度,使 ROS 的产生从 SO4·– 转变为 ·Co-NC 系统中的 OH。这些发现可以为电场调节下的 PMS 激活提供有价值的见解,为通过受控 ROS 生成来增强微污染物去除提供一种新策略。