当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Nanosheet Iron Phosphate by an Efficient Route for LiFePO4 Cathode Material
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-11-15 , DOI: 10.1021/acs.iecr.4c02655 Tingting Yi, Guorong Hu, Ke Du, Zhongdong Peng, Fangyang Liu, Yanbing Cao, Ke Bai, Quanjun Fu
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-11-15 , DOI: 10.1021/acs.iecr.4c02655 Tingting Yi, Guorong Hu, Ke Du, Zhongdong Peng, Fangyang Liu, Yanbing Cao, Ke Bai, Quanjun Fu
The precursor of FePO4·2H2O is prepared by a liquid phase conversion method with low-cost fine Fe3O4 ore powder from magnetite flotation, and the LiFePO4/C is synthesized by sanding and spray followed by roasting technology. By controlling the excess coefficient of phosphate to Fe, the influence on the degree of chemical reaction and the preferred orientation of the precursor of nano sheet FePO4·2H2O on the (020) face is investigated. The results indicate that when the mole of phosphate is 2.5 times that of iron, the thickness of the FePO4·2H2O precursor nanosheet is the thinnest, resulting in the synthesis of LiFePO4/C materials with the smallest primary particles and the best electrochemical properties. It can be observed that the specific discharge capacity of the as-prepared LiFePO4/C can reach 150.5 mAh/g at 1 C, and the capacity retention rate is still over 96% after 450 cycles at 2 C. At the same time, the Re-LFP/C-2 synthesized with FePO4·2H2O by recycling H3PO4 mother liquor can achieve the same excellent electrochemical performance as the LFP/C-2 synthesized with fresh H3PO4. It is demonstrated that this route has promising development prospects and is easily scalable. At the same time, this synthetic route is cheaper to synthesize and produces less wastewater, which provides a basis for exploring the green, efficient, and low-cost synthesis route of LiFePO4/C.
中文翻译:
通过高效路线制备 LiFePO4 正极材料的纳米磷酸铁片
以磁铁矿浮选低成本的细 Fe3O4 矿粉为原料,采用液相转化法制备了 FePO4·2H2O 的前驱体,并通过砂磨和喷雾后焙烧技术合成了 LiFePO4/C。通过控制磷酸盐对 Fe 的过量系数,研究了纳米片 FePO4·2H2O 在 (020) 面上化学反应程度和优选取向的影响。结果表明,当磷酸盐摩尔数是铁的 2.5 倍时,FePO4·2H2O 前驱体纳米片的厚度最薄,从而合成了具有最小初级颗粒和最佳电化学性能的 LiFePO4/C 材料。可以观察到,所制备的 LiFePO4/C 的比放电容量在 1 C 下可达 150.5 mAh/g,在 2 C 下循环 450 次后容量保持率仍超过 96%。同时,通过回收 H3PO4 母液合成的 FePO4·2H2O 合成的 Re-LFP/C-2 可以达到与新鲜 H3PO4 合成的 LFP/C-2 相同的优异电化学性能。结果表明,这条路线具有广阔的发展前景,并且易于扩展。同时,这种合成路线合成成本更低,产生的废水更少,为探索 LiFePO4/C 绿色、高效、低成本的合成路线提供了基础。
更新日期:2024-11-15
中文翻译:
通过高效路线制备 LiFePO4 正极材料的纳米磷酸铁片
以磁铁矿浮选低成本的细 Fe3O4 矿粉为原料,采用液相转化法制备了 FePO4·2H2O 的前驱体,并通过砂磨和喷雾后焙烧技术合成了 LiFePO4/C。通过控制磷酸盐对 Fe 的过量系数,研究了纳米片 FePO4·2H2O 在 (020) 面上化学反应程度和优选取向的影响。结果表明,当磷酸盐摩尔数是铁的 2.5 倍时,FePO4·2H2O 前驱体纳米片的厚度最薄,从而合成了具有最小初级颗粒和最佳电化学性能的 LiFePO4/C 材料。可以观察到,所制备的 LiFePO4/C 的比放电容量在 1 C 下可达 150.5 mAh/g,在 2 C 下循环 450 次后容量保持率仍超过 96%。同时,通过回收 H3PO4 母液合成的 FePO4·2H2O 合成的 Re-LFP/C-2 可以达到与新鲜 H3PO4 合成的 LFP/C-2 相同的优异电化学性能。结果表明,这条路线具有广阔的发展前景,并且易于扩展。同时,这种合成路线合成成本更低,产生的废水更少,为探索 LiFePO4/C 绿色、高效、低成本的合成路线提供了基础。