当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Identifying the Role of Interfacial Long-Range Order in Regulating the Solid Electrolyte Interphase in Lithium Metal Batteries
Nano Letters ( IF 9.6 ) Pub Date : 2024-11-15 , DOI: 10.1021/acs.nanolett.4c04018 Xiaohan Cai, Hao Xu, Cong Ma, Jiale Zheng, Ke Yue, Juxin Yue, Yao Wang, Jianwei Nai, Jianmin Luo, Huadong Yuan, Shihui Zou, Xinyong Tao, Yujing Liu
Nano Letters ( IF 9.6 ) Pub Date : 2024-11-15 , DOI: 10.1021/acs.nanolett.4c04018 Xiaohan Cai, Hao Xu, Cong Ma, Jiale Zheng, Ke Yue, Juxin Yue, Yao Wang, Jianwei Nai, Jianmin Luo, Huadong Yuan, Shihui Zou, Xinyong Tao, Yujing Liu
The self-assembled monolayer (SAM) technique, known for its customizable molecular segments and active end groups, is widely recognized as a powerful tool for regulating the interfacial properties of high-energy-density lithium metal batteries. However, it remains unclear how the degree of long-range order in SAMs affects the solid electrolyte interphase (SEI). In this study, we precisely controlled the hydrolysis of silanes to construct monolayers with varying degrees of long-range order and investigated their effects on the SEI nanostructure and lithium anode performance. The results indicate that the degree of long-range order in SAMs significantly influences the decomposition kinetics of the carbon–fluorine bond in lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), promoting the formation of a LiF-rich SEI and profoundly affecting the long-term stability of the highly sensitive anode during electrochemical processes. These findings provide new insights and directions for the molecular design of SAMs tailored for long-lasting lithium metal interfaces.
中文翻译:
确定界面长程有序在调节锂金属电池中固体电解质界面中的作用
自组装单层 (SAM) 技术以其可定制的分子片段和活性端基而闻名,被广泛认为是调节高能量密度锂金属电池界面特性的有力工具。然而,目前尚不清楚 SAM 中的长程有序程度如何影响固体电解质界面 (SEI)。在这项研究中,我们精确控制硅烷的水解以构建具有不同程度长程有序的单分子层,并研究了它们对 SEI 纳米结构和锂负极性能的影响。结果表明,SAMs中长程有序程度显著影响双(三氟甲烷磺酰基)酰亚胺锂(LiTFSI)中碳氟键的分解动力学,促进富含LiF的SEI的形成,并深刻影响高灵敏度负极在电化学过程中的长期稳定性。这些发现为为长效锂金属界面量身定制的 SAM 的分子设计提供了新的见解和方向。
更新日期:2024-11-16
中文翻译:
确定界面长程有序在调节锂金属电池中固体电解质界面中的作用
自组装单层 (SAM) 技术以其可定制的分子片段和活性端基而闻名,被广泛认为是调节高能量密度锂金属电池界面特性的有力工具。然而,目前尚不清楚 SAM 中的长程有序程度如何影响固体电解质界面 (SEI)。在这项研究中,我们精确控制硅烷的水解以构建具有不同程度长程有序的单分子层,并研究了它们对 SEI 纳米结构和锂负极性能的影响。结果表明,SAMs中长程有序程度显著影响双(三氟甲烷磺酰基)酰亚胺锂(LiTFSI)中碳氟键的分解动力学,促进富含LiF的SEI的形成,并深刻影响高灵敏度负极在电化学过程中的长期稳定性。这些发现为为长效锂金属界面量身定制的 SAM 的分子设计提供了新的见解和方向。