当前位置: X-MOL 学术Glob. Change Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi‐Omics Inform Invasion Risks Under Global Climate Change
Global Change Biology ( IF 10.8 ) Pub Date : 2024-11-16 , DOI: 10.1111/gcb.17588
Yiyong Chen, Yangchun Gao, Zhixin Zhang, Aibin Zhan

Global climate change is exacerbating biological invasions; however, the roles of genomic and epigenomic variations and their interactions in future climate adaptation remain underexplored. Using the model invasive ascidian Botryllus schlosseri across the Northern Hemisphere, we investigated genomic and epigenomic responses to future climates and developed a framework to assess future invasion risks. We employed generalized dissimilarity modeling and gradient forest analyses to assess genomic and epigenomic offsets under climate change. Our results showed that populations with genomic maladaptation did not geographically overlap with those experiencing epigenomic maladaptation, suggesting that genomic and epigenomic variations play complementary roles in adaptation to future climate conditions. By integrating genomic and epigenomic offsets into the genome–epigenomic index, we predicted that populations with lower index values were less maladapted, indicating a higher risk of future invasions. Native populations exhibited lower offsets than invasive populations, suggesting greater adaptive potentials and higher invasion risks under future climate change scenarios. These results highlight the importance of incorporating multi‐omics data into predictive models to study future climate (mal)adaptation and assess invasion risks under global climate change.

中文翻译:


多组学为全球气候变化下的入侵风险提供信息



全球气候变化正在加剧生物入侵;然而,基因组和表观基因组变异及其相互作用在未来气候适应中的作用仍未得到充分探索。使用整个北半球的入侵性海鞘 Botryllus schlosseri 模型,我们研究了基因组和表观基因组对未来气候的反应,并开发了一个框架来评估未来的入侵风险。我们采用广义差异模型和梯度森林分析来评估气候变化下的基因组和表观基因组偏移。我们的结果表明,基因组适应不良的人群与经历表观基因组适应不良的人群在地理上没有重叠,这表明基因组和表观基因组变异在适应未来气候条件方面起着互补作用。通过将基因组和表观基因组偏移整合到基因组-表观基因组指数中,我们预测指数值较低的人群适应不良程度较低,表明未来入侵的风险更高。本地种群表现出的偏移量低于入侵种群,这表明在未来气候变化情景下,本地种群具有更大的适应潜力和更高的入侵风险。这些结果强调了将多组学数据纳入预测模型以研究未来气候(不良)适应和评估全球气候变化下的入侵风险的重要性。
更新日期:2024-11-16
down
wechat
bug