当前位置:
X-MOL 学术
›
Rep. Prog. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Abrikosov clusters in chiral liquid crystal droplets.
Reports on Progress in Physics ( IF 19.0 ) Pub Date : 2024-11-14 , DOI: 10.1088/1361-6633/ad92a7 Victor Fernandez-Gonzalez,Marcel Clerc,Gregorio González-Cortés,Paulina Hidalgo,Jorge Vergara
Reports on Progress in Physics ( IF 19.0 ) Pub Date : 2024-11-14 , DOI: 10.1088/1361-6633/ad92a7 Victor Fernandez-Gonzalez,Marcel Clerc,Gregorio González-Cortés,Paulina Hidalgo,Jorge Vergara
Self-organizing triangular lattices of topological vortices have been observed in type-II superconductors, Bose-Einstein condensates, and chiral magnets under external forcing. Liquid crystals exhibit vortex self-organization in dissipative media. In this study, we experimentally investigate the formation of vortex clusters, analogous to Abrikosov lattices, in temperature-driven chiral liquid crystal droplets. Based on a Ginzburg-Landau-like equation, we derive the interaction laws underlying the formation of these Abrikosov clusters of chiral domains. The origin of these is elucidated due to the competition between the repulsive interaction and the spatial effect of the confinement within the droplet. Our results advance the theoretical understanding of localized vortex self-organization in liquid crystals and open up possibilities for controlling the clustering of these topological defects.
中文翻译:
Abrikosov 簇在手性液晶液滴中。
在外部强迫作用下,在 II 型超导体、玻色-爱因斯坦凝聚体和手性磁体中观察到拓扑涡旋的自组织三角形晶格。液晶在耗散介质中表现出涡旋自组织。在这项研究中,我们实验研究了在温度驱动的手性液晶液滴中形成类似于 Abrikosov 晶格的涡旋簇。基于类似 Ginzburg-Landau 的方程,我们推导出了这些 Abrikosov 手性结构域簇形成的相互作用规律。由于排斥相互作用与液滴内限制的空间效应之间的竞争,这些的起源被阐明。我们的结果促进了对液晶中局部涡旋自组织的理论理解,并为控制这些拓扑缺陷的聚集开辟了可能性。
更新日期:2024-11-14
中文翻译:
Abrikosov 簇在手性液晶液滴中。
在外部强迫作用下,在 II 型超导体、玻色-爱因斯坦凝聚体和手性磁体中观察到拓扑涡旋的自组织三角形晶格。液晶在耗散介质中表现出涡旋自组织。在这项研究中,我们实验研究了在温度驱动的手性液晶液滴中形成类似于 Abrikosov 晶格的涡旋簇。基于类似 Ginzburg-Landau 的方程,我们推导出了这些 Abrikosov 手性结构域簇形成的相互作用规律。由于排斥相互作用与液滴内限制的空间效应之间的竞争,这些的起源被阐明。我们的结果促进了对液晶中局部涡旋自组织的理论理解,并为控制这些拓扑缺陷的聚集开辟了可能性。