当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Regulating Li2S Deposition and Accelerating Conversion Kinetics through Intracavity ZnS toward Low-Temperature Lithium–Sulfur Batteries
Nano Letters ( IF 9.6 ) Pub Date : 2024-11-15 , DOI: 10.1021/acs.nanolett.4c04427
Hao Ding, Zhonghui Chen, Huiyu Li, Huadong Suo, Chaozhong Liu, Huanan Yu, Jingkun Yuan, Zixu Sun, Yanyan Zhu, Bo Song

The uncontrolled deposition behavior and sluggish conversion kinetics of the discharging product (solid Li2S) severely deteriorate the electrochemical performance of lithium–sulfur (Li–S) batteries, especially under high S loading and low-temperature conditions. Herein, a multifunctional S cathode host consisting of ZnS nanoparticles (NPs) confined in hollow porous carbon spheres (ZnS@HPCS) is synthesized via a unique capillary force-driven melting-diffusion strategy. The porous carbon shell of ZnS@HPCS provides a space-confined reservoir for soluble polysulfides and solid Li2S, while the intracavity ZnS NPs trap polysulfides, induce Li2S inside deposition, and accelerate conversion kinetics. Thus, Li–S batteries with ZnS@HPCS-S cathodes exhibit excellent electrochemical performance at both room and low temperatures (−40 °C) and high reversible capacities under high S loading (5.2 mg cm–2). Furthermore, Li2S nucleation/deposition, in situ Raman, and theoretical analyses reveal the underlying mechanism. This work offers fundamental insights into regulating Li2S deposition and designing S hosts for high-performance Li–S batteries.

中文翻译:


调节 Li2S 沉积并加速通过腔内 ZnS 向低温锂硫电池的转化动力学



放电产物(固体 Li2S)不受控制的沉积行为和缓慢的转换动力学严重恶化了锂硫 (Li-S) 电池的电化学性能,尤其是在高 S 负载和低温条件下。在此,通过独特的毛细管力驱动的熔融-扩散策略合成了由限制在空心多孔碳球 (ZnS@HPCS) 中的 ZnS 纳米颗粒 (NPs) 组成的多功能 S 阴极主体。ZnS@HPCS 的多孔碳壳为可溶性多硫化物和固体 Li2S 提供了一个空间受限的储库,而腔内 ZnS NPs 捕获多硫化物,在沉积内部诱导 Li2S,并加速转化动力学。因此,具有 ZnS@HPCS-S 阴极的 Li-S 电池在室温和低温 (-40 °C) 下均表现出优异的电化学性能,并在高 S 负载 (5.2 mg cm–2) 下表现出高可逆容量。此外,Li2S 成核/沉积、原位拉曼和理论分析揭示了潜在的机制。这项工作为调节 Li2S 沉积和为高性能 Li-S 电池设计 S 主体提供了基本见解。
更新日期:2024-11-15
down
wechat
bug