当前位置:
X-MOL 学术
›
Appl. Phys. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhanced tungsten wire energy deposition during copper–tungsten intertwined electrical explosion in atmospheric air
Applied Physics Letters ( IF 3.5 ) Pub Date : 2024-11-14 , DOI: 10.1063/5.0236288 Tuan Li, Huantong Shi, Tongquan Wang, Peizhou Zhang, Dongsheng Wang, Yujia Hu, Jian Wu, Xingwen Li
Applied Physics Letters ( IF 3.5 ) Pub Date : 2024-11-14 , DOI: 10.1063/5.0236288 Tuan Li, Huantong Shi, Tongquan Wang, Peizhou Zhang, Dongsheng Wang, Yujia Hu, Jian Wu, Xingwen Li
Intertwined electrical wire explosion (EWE) is considered as a potential method for large-scale synthesis of high-entropy alloy nanoparticles, while the helical structure, close contact, and different electrothermal properties of wires add to the difficulties of controlling the Joule energy distribution among the wires. In this paper, two very dissimilar materials, copper and tungsten, are chosen as representatives of nonrefractory and refractory metals, and the Cu–W intertwined EWE is compared to parallel EWE of spaced straight Cu and W wires. It is found that for the intertwined load, the majority of the tungsten wire is located in the center and encapsulated by copper vapor, with a low-density spiral plasma belt surrounding the exploding product, and the tungsten wire is transformed into a highly vaporized state instead of a typical core–corona structure, with expansion velocity ∼1.8 times and average energy deposition more than three times that of the parallel load. This dramatic difference is attributed to the high-density and high-pressure vapor medium created by early explosion of the copper wire, which surrounds the tungsten wire and suppresses the formation and expansion of conductive surface plasma channel. These findings can serve to improve the load design for achieving simultaneous dispersion and uniform mixing of dissimilar materials via intertwined EWE.
中文翻译:
在大气中铜-钨交织电爆炸过程中增强的钨丝能量沉积
交织电线爆炸 (EWE) 被认为是大规模合成高熵合金纳米颗粒的潜在方法,而电线的螺旋结构、紧密接触和不同的电热性能增加了控制电线间焦耳能量分布的难度。在本文中,选择了两种非常不同的材料,铜和钨,作为非难熔金属和难熔金属的代表,并将 Cu-W 交织的 EWE 与间隔的直 Cu 和 W 线的平行 EWE 进行了比较。研究发现,对于交织载荷,大部分钨丝位于中心并被铜蒸气封装,爆炸产物周围有低密度螺旋等离子体带,钨丝转变为高度汽化状态,而不是典型的芯-电晕结构,膨胀速度 ∼1.8 倍,平均能量沉积是并联载荷的 3 倍以上。这种巨大的差异归因于铜线早期爆炸产生的高密度和高压蒸汽介质,铜线围绕着钨丝并抑制了导电表面等离子体通道的形成和膨胀。这些发现可用于改进载荷设计,通过交织的 EWE 实现异种材料的同步分散和均匀混合。
更新日期:2024-11-14
中文翻译:
在大气中铜-钨交织电爆炸过程中增强的钨丝能量沉积
交织电线爆炸 (EWE) 被认为是大规模合成高熵合金纳米颗粒的潜在方法,而电线的螺旋结构、紧密接触和不同的电热性能增加了控制电线间焦耳能量分布的难度。在本文中,选择了两种非常不同的材料,铜和钨,作为非难熔金属和难熔金属的代表,并将 Cu-W 交织的 EWE 与间隔的直 Cu 和 W 线的平行 EWE 进行了比较。研究发现,对于交织载荷,大部分钨丝位于中心并被铜蒸气封装,爆炸产物周围有低密度螺旋等离子体带,钨丝转变为高度汽化状态,而不是典型的芯-电晕结构,膨胀速度 ∼1.8 倍,平均能量沉积是并联载荷的 3 倍以上。这种巨大的差异归因于铜线早期爆炸产生的高密度和高压蒸汽介质,铜线围绕着钨丝并抑制了导电表面等离子体通道的形成和膨胀。这些发现可用于改进载荷设计,通过交织的 EWE 实现异种材料的同步分散和均匀混合。