当前位置: X-MOL 学术Appl. Phys. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mn3Sn-based noncollinear antiferromagnetic tunnel junctions with bilayer boron nitride tunnel barriers
Applied Physics Letters ( IF 3.5 ) Pub Date : 2024-11-14 , DOI: 10.1063/5.0234130
Zhanran Wang, Bo Bian, Lei Zhang, Zhizhou Yu

Electrical manipulation and detection of antiferromagnetic states have opened a new era in the field of spintronics. Here, we propose a noncollinear antiferromagnetic tunnel junction (AFMTJ) consisting of noncollinear antiferromagnetic Mn3Sn as electrodes and a bilayer boron nitride as the insulating layer. By employing the first-principles method and the nonequilibrium Green's function, we predict that the tunneling magnetoresistance (TMR) of the AFMTJ with AA- and AB-stacked boron nitride can achieve approximately 97% and 49%, respectively. Moreover, different orientations of the Néel vector in the electrodes lead to four distinct tunneling states in the Mn3Sn/bilayer BN/Mn3Sn AFMTJ. The TMR ratio could be notably improved by adjusting the chemical potentials, reaching up to approximately 135% at a chemical potential of 0.1 eV for the AFMTJ with AA-stacked boron nitride. This enhancement can be primarily attributed to the reduction in the transmission of antiparallel configurations around the K and K′ points in the two-dimensional Brillouin zone. Our findings could provide extensive opportunities for all-electrical reading and writing of the Néel vector of noncollinear antiferromagnets, paving the way for the development of antiferromagnetic tunnel junctions with two-dimensional tunnel barriers.

中文翻译:


基于 Mn3Sn 的非共线反铁磁隧道结与双层氮化硼隧道屏障



反铁磁态的电操作和检测开启了自旋电子学领域的新时代。在这里,我们提出了一种非共线反铁磁隧道结 (AFMTJ),它由非共线反铁磁 Mn3Sn 作为电极和双层氮化硼作为绝缘层组成。通过采用第一性原理方法和非平衡格林函数,我们预测了具有 AA 和 AB 叠层氮化硼的 AFMTJ 的隧穿磁阻 (TMR) 分别可以达到大约 97% 和 49%。此外,电极中 Néel 矢量的不同方向导致 Mn3Sn/双层 BN/Mn3Sn AFMTJ 中出现四种不同的隧穿状态。通过调整化学势可以显著提高 TMR 比率,对于 AA 叠层氮化硼的 AFMTJ,在 0.1 eV 的化学势下达到约 135%。这种增强主要归因于二维布里渊区中 K 和 K′ 点周围反平行构型的传输减少。我们的研究结果可以为非共线反铁磁体的 Néel 矢量的全电读写提供广泛的机会,为开发具有二维隧道屏障的反铁磁隧道结铺平了道路。
更新日期:2024-11-14
down
wechat
bug