当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Turning on Low-Temperature Catalytic Conversion of Biomass Derivatives through Teaming Pd1 and Mo1 Single-Atom Sites
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-11-14 , DOI: 10.1021/jacs.4c07075 Yu Tang, George Yan, Shiran Zhang, Yuting Li, Luan Nguyen, Yasuhiro Iwasawa, Tomohiro Sakata, Christopher Andolina, Judith C. Yang, Philippe Sautet, Franklin Feng Tao
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-11-14 , DOI: 10.1021/jacs.4c07075 Yu Tang, George Yan, Shiran Zhang, Yuting Li, Luan Nguyen, Yasuhiro Iwasawa, Tomohiro Sakata, Christopher Andolina, Judith C. Yang, Philippe Sautet, Franklin Feng Tao
On-purpose atomic scale design of catalytic sites, specifically active and selective at low temperature for a target reaction, is a key challenge. Here, we report teamed Pd1 and Mo1 single-atom sites that exhibit high activity and selectivity for anisole hydrodeoxygenation to benzene at low temperatures, 100–150 °C, where a Pd metal nanoparticle catalyst or a MoO3 nanoparticle catalyst is individually inactive. The catalysts built from Pd1 or Mo1 single-atom sites alone are much less effective, although the catalyst with Pd1 sites shows some activity but low selectivity. Similarly, less dispersed nanoparticle catalysts are much less effective. Computational studies show that the Pd1 and Mo1 single-atom sites activate H2 and anisole, respectively, and their combination triggers the hydrodeoxygenation of anisole in this low-temperature range. The Co3O4 support is inactive for anisole hydrodeoxygenation by itself but participates in the chemistry by transferring H atoms from Pd1 to the Mo1 site. This finding opens an avenue for designing catalysts active for a target reaction channel such as conversion of biomass derivatives at a low temperature where neither metal nor oxide nanoparticles are.
中文翻译:
通过配对 Pd1 和 Mo1 单原子位点开启生物质衍生物的低温催化转化
催化位点的有目的地原子尺度设计,特别是在低温下对目标反应的活性和选择性设计,是一项关键挑战。在这里,我们报告了配对的 Pd1 和 Mo1 单原子位点,它们在 100-150 °C 的低温下表现出对苯甲醚加氢脱氧的高活性和选择性,其中 Pd 金属纳米颗粒催化剂或 MoO3 纳米颗粒催化剂单独无活性。单独由 Pd1 或 Mo1 单原子位点构建的催化剂效果要差得多,尽管具有 Pd1 位点的催化剂显示出一些活性但选择性较低。同样,分散性较差的纳米颗粒催化剂的效果要差得多。计算研究表明,Pd1 和 Mo1 单原子位点分别激活 H2 和苯甲醚,它们的组合在此低温范围内触发苯甲醚的加氢脱氧。Co3O4 负载物本身对苯甲醚加氢脱氧无活性,但通过将 H 原子从 Pd1 转移到 Mo1 位点参与化学反应。这一发现为设计对目标反应通道具有活性的催化剂开辟了一条途径,例如在金属和氧化物纳米颗粒都没有的低温下转化生物质衍生物。
更新日期:2024-11-15
中文翻译:
通过配对 Pd1 和 Mo1 单原子位点开启生物质衍生物的低温催化转化
催化位点的有目的地原子尺度设计,特别是在低温下对目标反应的活性和选择性设计,是一项关键挑战。在这里,我们报告了配对的 Pd1 和 Mo1 单原子位点,它们在 100-150 °C 的低温下表现出对苯甲醚加氢脱氧的高活性和选择性,其中 Pd 金属纳米颗粒催化剂或 MoO3 纳米颗粒催化剂单独无活性。单独由 Pd1 或 Mo1 单原子位点构建的催化剂效果要差得多,尽管具有 Pd1 位点的催化剂显示出一些活性但选择性较低。同样,分散性较差的纳米颗粒催化剂的效果要差得多。计算研究表明,Pd1 和 Mo1 单原子位点分别激活 H2 和苯甲醚,它们的组合在此低温范围内触发苯甲醚的加氢脱氧。Co3O4 负载物本身对苯甲醚加氢脱氧无活性,但通过将 H 原子从 Pd1 转移到 Mo1 位点参与化学反应。这一发现为设计对目标反应通道具有活性的催化剂开辟了一条途径,例如在金属和氧化物纳米颗粒都没有的低温下转化生物质衍生物。