当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Design and Development of a 3D Network Hybrid Polymeric System for Enhanced Dielectric Properties through Selective γ-Crystal Growth of Poly(PVDF-CTFE) and Reduced High-Frequency Relaxation
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-11-15 , DOI: 10.1021/acs.iecr.4c01542 Shuta Hara, Atsushi Furukawa, Takao Gunji, Takayuki Ikehara, Hiroki Ikake, Shigeru Shimizu
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-11-15 , DOI: 10.1021/acs.iecr.4c01542 Shuta Hara, Atsushi Furukawa, Takao Gunji, Takayuki Ikehara, Hiroki Ikake, Shigeru Shimizu
The selective growth of polar crystals, such as γ and β forms, during melt molding of poly(vinylidene fluoride) (PVDF) and its copolymers is expected to provide a wide range of applications. In particular, PVDF materials with γ crystals exhibit high Curie temperatures and are suitable for use under harsh conditions. In this study, poly(MMA-co-VA) composed of methyl methacrylate, vinylphosphonic acid(VA), silica, and tetrabutylphosphonium chloride (TBPC), was added to poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE). This system created melt-formable three-dimensional (3D) networks of poly(methyl methacrylate) and silica in the amorphous regions of PVDF-CTFE. TBPC enhanced the dispersibility of silica nanoparticles, promoting the selective growth of γ′ crystals in the presence of silica nanoparticles, leading to improved mechanical properties, heat resistance, and dielectric constant. Furthermore, the 3D network suppressed the relaxation of poly(MMA-co-VA) and poly(PVDF-CTFE) and the high-frequency dielectric loss. This method creates melt-formable multifunctional materials with high dielectric constants by using inorganic nanoparticles.
中文翻译:
设计和开发 3D 网络混合聚合物系统,通过聚 (PVDF-CTFE) 的选择性γ晶生长和减少高频弛豫来增强介电性能
在聚偏二氟乙烯 (PVDF) 及其共聚物的熔融成型过程中,极性晶体(如 γ 和 β 形式)的选择性生长有望提供广泛的应用。特别是,具有γ晶体的 PVDF 材料表现出较高的居里温度,适合在恶劣条件下使用。在本研究中,由甲基丙烯酸甲酯、乙烯基膦酸 (VA)、二氧化硅和四丁基氯化膦 (TBPC) 组成的聚 (MMA-co-VA) 添加到聚(偏二氟乙烯-共氯三氟乙烯) (PVDF-CTFE) 中。该系统在 PVDF-CTFE 的无定形区域创建了聚甲基丙烯酸甲酯和二氧化硅的可熔融成型三维 (3D) 网络。TBPC 增强了二氧化硅纳米颗粒的分散性,促进了 γ' 晶体在二氧化硅纳米颗粒存在下的选择性生长,从而改善了机械性能、耐热性和介电常数。此外,三维网络抑制了聚 (MMA-co-VA) 和聚 (PVDF-CTFE) 的松弛以及高频介电损耗。该方法通过使用无机纳米颗粒制造具有高介电常数的可熔融成型多功能材料。
更新日期:2024-11-15
中文翻译:
设计和开发 3D 网络混合聚合物系统,通过聚 (PVDF-CTFE) 的选择性γ晶生长和减少高频弛豫来增强介电性能
在聚偏二氟乙烯 (PVDF) 及其共聚物的熔融成型过程中,极性晶体(如 γ 和 β 形式)的选择性生长有望提供广泛的应用。特别是,具有γ晶体的 PVDF 材料表现出较高的居里温度,适合在恶劣条件下使用。在本研究中,由甲基丙烯酸甲酯、乙烯基膦酸 (VA)、二氧化硅和四丁基氯化膦 (TBPC) 组成的聚 (MMA-co-VA) 添加到聚(偏二氟乙烯-共氯三氟乙烯) (PVDF-CTFE) 中。该系统在 PVDF-CTFE 的无定形区域创建了聚甲基丙烯酸甲酯和二氧化硅的可熔融成型三维 (3D) 网络。TBPC 增强了二氧化硅纳米颗粒的分散性,促进了 γ' 晶体在二氧化硅纳米颗粒存在下的选择性生长,从而改善了机械性能、耐热性和介电常数。此外,三维网络抑制了聚 (MMA-co-VA) 和聚 (PVDF-CTFE) 的松弛以及高频介电损耗。该方法通过使用无机纳米颗粒制造具有高介电常数的可熔融成型多功能材料。