当前位置:
X-MOL 学术
›
J. Mater. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Constructing asymmetric dual active sites of Ag single atoms and nitrogen defects on carbon nitride for enhanced photocatalytic H2O2 production
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-11-15 , DOI: 10.1016/j.jmst.2024.09.048 Dongjie Liu, Chunyang Zhang, Jinwen Shi, Lubing Li, Wei Liu, Maochang Liu, Jinzhan Su, Jia Liu, Liejin Guo
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-11-15 , DOI: 10.1016/j.jmst.2024.09.048 Dongjie Liu, Chunyang Zhang, Jinwen Shi, Lubing Li, Wei Liu, Maochang Liu, Jinzhan Su, Jia Liu, Liejin Guo
Photosynthesis of hydrogen peroxide (H2O2) from H2O and O2 is considered to be a promising approach. However, limited to the rapid recombination of photo-generated carriers and sluggish kinetics of O2 reduction to H2O2, it is a challenge for polymeric photocatalysts to achieve efficient photocatalytic H2O2 production. Herein, Ag single atoms and nitrogen defects decorated carbon nitride (Ag@MCT) are constructed through self-assembly and pyrolysis methods. The optimized photocatalyst displays exceptional performance in pure water, with an H2O2 production rate of as high as 528.4 μmol g-1 h-1 and an apparent quantum yield for H2O2 production of 4.5% at 420 nm. Experimental and theoretical results reveal that the Ag atomic sites act as electron mediators that promote the capture and transfer of photo-generated charge carriers, while nitrogen defects as electron collectors and reaction sites to enhance the adsorption and activation of O2, accelerating reduction kinetics from O2 to H2O2. This work presents a reliable strategy to design excellent photocatalysts by rationally modulating electronic structures and active sites for accelerating photo-generated charge carriers transfer and surface reaction kinetics.
中文翻译:
在氮化碳上构建 Ag 单原子和氮缺陷的不对称双活性位点,以增强光催化 H2O2 的产生
从 H2、O 和 O2 光合作用过氧化氢 (H2O2) 被认为是一种很有前途的方法。然而,受限于光生载流子的快速复合和 O2 还原为 H2O2 的缓慢动力学,聚合物光催化剂实现高效的光催化 H2O2 生产是一个挑战。在此,Ag 单原子和氮缺陷修饰的氮化碳 (Ag@MCT) 是通过自组装和热解方法构建的。优化的光催化剂在纯水中表现出卓越的性能,H2O2 生成速率高达 528.4 μmol g-1 h-1,在 420 nm 处产生 H2O2 的表观量子产率为 4.5%。实验和理论结果表明,Ag 原子位点充当电子介质,促进光生载流子的捕获和转移,而氮缺陷作为电子收集器和反应位点,增强 O2 的吸附和活化,加速从 O2 到 H2O2 的还原动力学.这项工作提出了一种可靠的策略,通过合理调节电子结构和活性位点来设计优秀的光催化剂,以加速光生载流子转移和表面反应动力学。
更新日期:2024-11-15
中文翻译:
在氮化碳上构建 Ag 单原子和氮缺陷的不对称双活性位点,以增强光催化 H2O2 的产生
从 H2、O 和 O2 光合作用过氧化氢 (H2O2) 被认为是一种很有前途的方法。然而,受限于光生载流子的快速复合和 O2 还原为 H2O2 的缓慢动力学,聚合物光催化剂实现高效的光催化 H2O2 生产是一个挑战。在此,Ag 单原子和氮缺陷修饰的氮化碳 (Ag@MCT) 是通过自组装和热解方法构建的。优化的光催化剂在纯水中表现出卓越的性能,H2O2 生成速率高达 528.4 μmol g-1 h-1,在 420 nm 处产生 H2O2 的表观量子产率为 4.5%。实验和理论结果表明,Ag 原子位点充当电子介质,促进光生载流子的捕获和转移,而氮缺陷作为电子收集器和反应位点,增强 O2 的吸附和活化,加速从 O2 到 H2O2 的还原动力学.这项工作提出了一种可靠的策略,通过合理调节电子结构和活性位点来设计优秀的光催化剂,以加速光生载流子转移和表面反应动力学。