当前位置:
X-MOL 学术
›
Energy Storage Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Rectifying solid electrolyte interphase structure for stable multi-dimensional silicon anodes
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-11-15 , DOI: 10.1016/j.ensm.2024.103911 Changhaoyue Xu, Peng Jing, Zhiwen Deng, Qingqing Liu, Ye Jia, Xuemei Zhang, Yan Deng, Yun Zhang, Wenlong Cai
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-11-15 , DOI: 10.1016/j.ensm.2024.103911 Changhaoyue Xu, Peng Jing, Zhiwen Deng, Qingqing Liu, Ye Jia, Xuemei Zhang, Yan Deng, Yun Zhang, Wenlong Cai
Electrolyte engineering is a promising strategy to stabilize electrode structure. However, the high active material utilization of Si anode accompanied by inevitable huge volume expansion makes higher requirements than regulating Li metal deposition behaviors from dendrite growth. Herein, we rectified the solid electrolyte interphase (SEI) layer on Si surface to maintain the electrode integrity during repeated cycling. In our design, an oligomeric buffer layer (CHO2-/CH3O-) derived from FEC and an inorganic pillar (LiF/Li3N) derived from LiFSI/LiNO3 weave into organic-inorganic crosslinking SEI during the initial activation process. Leveraging COMSOL modeling reveals the small stress and strain of the Si particle under the protective effect of concrete SEI layers. Moreover, synchrotron X-ray 3D nano-computed tomography comprehensively elucidates the structural integrity of Si particles during cycling. With this merit, various silicon-based anodes show remarkable cycling stability. Notably, the Si/C || LiFePO4 full battery still affords a capacity retention ratio exceeding 95 % at 1 mA cm−2 after 300 cycles. This interphase engineering design strategy provided in our work advances the understanding of how to cope with devastating volume variation by leveraging the SEI characteristic perspective.
中文翻译:
整流固体电解质界面结构,实现稳定的多维硅负极
电解质工程是稳定电极结构的一种很有前途的策略。然而,Si 负极的高活性材料利用率伴随着不可避免的巨大体积膨胀,使得对枝晶生长对调节锂金属沉积行为的要求更高。在此,我们整流了 Si 表面上的固体电解质界面 (SEI) 层,以在重复循环过程中保持电极的完整性。在我们的设计中,源自 FEC 的低聚缓冲层 (CHO2-/CH3O-) 和源自 LiFSI/LiNO3 的无机柱 (LiF/Li3N) 在初始活化过程中编织成有机-无机交联 SEI。利用 COMSOL 建模揭示了 Si 颗粒在混凝土 SEI 层保护作用下的小应力和应变。此外,同步加速器 X 射线 3D 纳米计算机断层扫描全面阐明了 Si 颗粒在循环过程中的结构完整性。凭借这一优点,各种硅基负极表现出显着的循环稳定性。值得注意的是,Si/C ||LiFePO4 满电池在 95 次循环后在 1 mA cm-2 时仍提供超过 300% 的容量保持率。我们工作中提供的这种阶段间工程设计策略促进了对如何利用 SEI 特征来应对毁灭性体积变化的理解。
更新日期:2024-11-20
中文翻译:
整流固体电解质界面结构,实现稳定的多维硅负极
电解质工程是稳定电极结构的一种很有前途的策略。然而,Si 负极的高活性材料利用率伴随着不可避免的巨大体积膨胀,使得对枝晶生长对调节锂金属沉积行为的要求更高。在此,我们整流了 Si 表面上的固体电解质界面 (SEI) 层,以在重复循环过程中保持电极的完整性。在我们的设计中,源自 FEC 的低聚缓冲层 (CHO2-/CH3O-) 和源自 LiFSI/LiNO3 的无机柱 (LiF/Li3N) 在初始活化过程中编织成有机-无机交联 SEI。利用 COMSOL 建模揭示了 Si 颗粒在混凝土 SEI 层保护作用下的小应力和应变。此外,同步加速器 X 射线 3D 纳米计算机断层扫描全面阐明了 Si 颗粒在循环过程中的结构完整性。凭借这一优点,各种硅基负极表现出显着的循环稳定性。值得注意的是,Si/C ||LiFePO4 满电池在 95 次循环后在 1 mA cm-2 时仍提供超过 300% 的容量保持率。我们工作中提供的这种阶段间工程设计策略促进了对如何利用 SEI 特征来应对毁灭性体积变化的理解。