当前位置:
X-MOL 学术
›
Laser Photonics Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Wide‐Temperature Persistent Luminescence
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2024-11-15 , DOI: 10.1002/lpor.202401464 Mingxing Li, Wenwu You, Xiaomin Zhang, Jiacai Li, Chennan Zhang, Zhili Xu, Pingping Fan, Gencai Pan, Yanli Mao
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2024-11-15 , DOI: 10.1002/lpor.202401464 Mingxing Li, Wenwu You, Xiaomin Zhang, Jiacai Li, Chennan Zhang, Zhili Xu, Pingping Fan, Gencai Pan, Yanli Mao
Traditional persistent luminescence (PersL) materials depend on the distribution of inherent traps within their structure, which are usually narrow and discontinuous, thereby restricting their functionality to a limited temperature range. The development of materials capable of PersL over a wide temperature range, represents a significant hurdle in the advancement of PersL technology. Here, this study deviates from the conventional method of relying on inherent traps and instead harness recoverable Frenkel defects within fluoride materials to broaden the operational temperature range for PersL. Under X‐ray irradiation, Frenkel defects involving the migration of fluorine ions can be generated and recovered in real time, accompanied by the formation and dissipation of localized excitons, ultimately transferring energy to the luminescent centers. Notably, this recovery process is operative at all temperatures and is sufficiently slow‐paced, ensuring that PersL can be observed across every temperature range (77–500K). Building on this mechanism, the production of multicolor wide‐temperature PersL is readily attainable through the straightforward substitution of various luminescent centers. Significantly, X‐ray‐induced recoverable Frenkel defects have the potential to confer the characteristics of wide‐temperature PersL to materials that inherently lack these attributes. This, in turn, provides a new design strategy for developing wide‐temperature PersL materials.
中文翻译:
宽温持续发光
传统的持续发光 (PersL) 材料依赖于其结构内固有陷阱的分布,这些陷阱通常是狭窄且不连续的,因此将其功能限制在有限的温度范围内。能够在较宽温度范围内实现 PersL 的材料的发展是 PersL 技术进步的重大障碍。在这里,这项研究偏离了依赖固有陷阱的传统方法,而是利用氟化物材料中可恢复的 Frenkel 缺陷来拓宽 PersL 的操作温度范围。在 X 射线照射下,可以实时产生和恢复涉及氟离子迁移的 Frenkel 缺陷,并伴随着局部激子的形成和消散,最终将能量转移到发光中心。值得注意的是,这种回收过程在所有温度下都有效,并且节奏足够慢,确保在每个温度范围 (77–500K) 都可以观察到 PersL。基于这种机制,通过直接替换各种发光中心,可以很容易地实现多色宽温 PersL 的生产。值得注意的是,X 射线诱导的可恢复 Frenkel 缺陷有可能赋予本质上缺乏这些属性的材料宽温 PersL 的特性。这反过来又为开发宽温 PersL 材料提供了一种新的设计策略。
更新日期:2024-11-15
中文翻译:
宽温持续发光
传统的持续发光 (PersL) 材料依赖于其结构内固有陷阱的分布,这些陷阱通常是狭窄且不连续的,因此将其功能限制在有限的温度范围内。能够在较宽温度范围内实现 PersL 的材料的发展是 PersL 技术进步的重大障碍。在这里,这项研究偏离了依赖固有陷阱的传统方法,而是利用氟化物材料中可恢复的 Frenkel 缺陷来拓宽 PersL 的操作温度范围。在 X 射线照射下,可以实时产生和恢复涉及氟离子迁移的 Frenkel 缺陷,并伴随着局部激子的形成和消散,最终将能量转移到发光中心。值得注意的是,这种回收过程在所有温度下都有效,并且节奏足够慢,确保在每个温度范围 (77–500K) 都可以观察到 PersL。基于这种机制,通过直接替换各种发光中心,可以很容易地实现多色宽温 PersL 的生产。值得注意的是,X 射线诱导的可恢复 Frenkel 缺陷有可能赋予本质上缺乏这些属性的材料宽温 PersL 的特性。这反过来又为开发宽温 PersL 材料提供了一种新的设计策略。