当前位置: X-MOL 学术Genome Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
VI-VS: calibrated identification of feature dependencies in single-cell multiomics
Genome Biology ( IF 10.1 ) Pub Date : 2024-11-15 , DOI: 10.1186/s13059-024-03419-z
Pierre Boyeau, Stephen Bates, Can Ergen, Michael I. Jordan, Nir Yosef

Unveiling functional relationships between various molecular cell phenotypes from data using machine learning models is a key promise of multiomics. Existing methods either use flexible but hard-to-interpret models or simpler, misspecified models. VI-VS (Variational Inference for Variable Selection) balances flexibility and interpretability to identify relevant feature relationships in multiomic data. It uses deep generative models to identify conditionally dependent features, with false discovery rate control. VI-VS is available as an open-source Python package, providing a robust solution to identify features more likely representing genuine causal relationships.

中文翻译:


VI-VS:单细胞多组学中特征依赖性的校准鉴定



使用机器学习模型从数据中揭示各种分子细胞表型之间的功能关系是多组学的一个关键承诺。现有方法要么使用灵活但难以解释的模型,要么使用更简单、指定错误的模型。VI-VS (Variational Inference for Variable Selection) 平衡了灵活性和可解释性,以识别多组学数据中的相关特征关系。它使用深度生成模型来识别条件依赖的特征,并具有错误发现率控制。VI-VS 作为开源 Python 包提供,提供了一个强大的解决方案来识别更有可能代表真实因果关系的特征。
更新日期:2024-11-15
down
wechat
bug