当前位置:
X-MOL 学术
›
Proc. Natl. Acad. Sci. U.S.A.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Self-sacrificing and self-supporting biomass carbon anode–assisted water electrolysis for low-cost hydrogen production
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2024-11-14 , DOI: 10.1073/pnas.2316352121 Yuming Huang, Wei Zhou, Liang Xie, Xiaoxiao Meng, Junfeng Li, Jihui Gao, Guangbo Zhao, Yukun Qin
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2024-11-14 , DOI: 10.1073/pnas.2316352121 Yuming Huang, Wei Zhou, Liang Xie, Xiaoxiao Meng, Junfeng Li, Jihui Gao, Guangbo Zhao, Yukun Qin
Electrooxidation of renewable and CO 2 -neutral biomass for low-cost hydrogen production is a promising and green technology. Various biomass platform molecules (BPMs) oxidation assisted hydrogen production technologies have obtained noticeable progress. However, BPMs anodic oxidation is highly dependent on electrocatalysts, and the oxidation mechanism is ambiguous. Meanwhile, the complexity and insolubility of natural biomass severely constrain the efficient utilization of biomass resources. Here, we develop a self-sacrificing and self-supporting carbon anode (SSCA) using waste corncobs. The combined results from multiple characterizations reveal that the structure-property-activity relationship of SSCA in carbon oxidation reaction (COR). Theoretical calculations demonstrate that carbon atoms with a high spin density play a pivotal role in reducing the adsorption energy of the reactive oxygen intermediate (*OH) during the transition from OH – to *OH, thereby promoting COR. Additionally, the HER||COR system allows driving a current density of 400 mA cm geo - 2 at 1.24 V at 80 °C, with a hydrogen production electric consumption of 2.96 kWh Nm –3 (H 2 ). The strategy provides a ground-breaking perspective on the large-scale utilization of biomass and low-energy water electrolysis for hydrogen production.
中文翻译:
用于低成本制氢的自牺牲和自支撑生物质碳阳极辅助水电解
可回收和 CO 2 中性生物质的电氧化用于低成本制氢是一项很有前途的绿色技术。各种生物质平台分子 (BPMs) 氧化辅助制氢技术取得了显著进展。然而,BPMs 阳极氧化高度依赖于电催化剂,并且氧化机制不明确。同时,天然生物质的复杂性和不溶性严重制约了生物质资源的有效利用。在这里,我们使用废玉米芯开发了一种自牺牲和自支撑的碳阳极 (SSCA)。多重表征的综合结果表明,SSCA 在碳氧化反应 (COR) 中的构-性-活关系。理论计算表明,在从 OH 到 *OH 的转变过程中,具有高自旋密度的碳原子在降低活性氧中间体 (*OH) 的吸附能方面起着关键作用,从而促进了 COR。此外,HER||COR 系统允许在 80 °C 下以 1.24 V 驱动 400 mA cm geo - 2 的电流密度,制氢耗电量为 2.96 kWh Nm –3 (H 2)。该战略为大规模利用生物质和低能耗水电解制氢提供了开创性的视角。
更新日期:2024-11-14
中文翻译:
用于低成本制氢的自牺牲和自支撑生物质碳阳极辅助水电解
可回收和 CO 2 中性生物质的电氧化用于低成本制氢是一项很有前途的绿色技术。各种生物质平台分子 (BPMs) 氧化辅助制氢技术取得了显著进展。然而,BPMs 阳极氧化高度依赖于电催化剂,并且氧化机制不明确。同时,天然生物质的复杂性和不溶性严重制约了生物质资源的有效利用。在这里,我们使用废玉米芯开发了一种自牺牲和自支撑的碳阳极 (SSCA)。多重表征的综合结果表明,SSCA 在碳氧化反应 (COR) 中的构-性-活关系。理论计算表明,在从 OH 到 *OH 的转变过程中,具有高自旋密度的碳原子在降低活性氧中间体 (*OH) 的吸附能方面起着关键作用,从而促进了 COR。此外,HER||COR 系统允许在 80 °C 下以 1.24 V 驱动 400 mA cm geo - 2 的电流密度,制氢耗电量为 2.96 kWh Nm –3 (H 2)。该战略为大规模利用生物质和低能耗水电解制氢提供了开创性的视角。